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Note: This is the “Final Solution” of the work of John Tromp and his colleagues 

whose progress was first reported on in 2010. After approximating the enormous 
number of possible Go games and the length of the longest one, they have finally 
reached their goal of precisely calculating the number of legal positions on the 
standard board size of 19x19. 

 
 

Introduction: The State of Affairs Six Years Ago in 2010  
 

Another mathematical fairyland in the world of Go was recently added to by 
Dutch computer scientist John Tromp and his colleagues. Their work on Go 
Combinatorics—the science of counting—join Elwyn Berlekamp and Bill Spight’s 
combinatorial game theories and Monte Carlo methods in computer Go that have left 
little of our traditional thoughts about the inner mechanics of the game. 1 

In a private communication, Dr. Tromp discussed his early work on the longest 
possible game. He said that the number of possible games is exponential 2 in the length 
of the longest game, but nevertheless, I found the techniques and results to be 
remarkably interesting. 

And what kind of game would this be? 
 
The notion of eyes only arises in sensible play. For our results, forget all that you 

know about Go strategy and sensible play; we simply look at all possible move 
sequences . . . 

 
The result is that most of the games are similar to the Stone Counting Method 

that I used in Beginning Go (Tuttle 2008) to explain the game and teach the concept of 
shape on small boards to children. Both players keep putting down stones until the loser 
has only two eyes left which leaves the winner with two eyes plus empty intersections 
that count as points. However, in Dr. Tromp’s version the game doesn’t end at that 
point—the “loser” can still play by filling in one eye and the game doesn’t stop just 
because there are no stones left after everything is taken off by the opponent on the 
                                                           
1 In 2016, Google’s Deepmind AlphaGo that can beat top professionals has now been added to the list 
(http://deepmind.com/alpha-go.html) while a movie, The Surrounding Game, will soon explore the intensities of 
the also other-worldly training and development of professional Go players in the Far East. 
(http://www.surroundinggamemovie.com/en) 
2 See, for example, http://www.purplemath.com/modules/expofcns.htm  

http://deepmind.com/alpha-go.html
http://www.surroundinggamemovie.com/en
http://www.purplemath.com/modules/expofcns.htm
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next move. They just keep playing until the positional Superko rule that no previous 
position can repeated forces two consecutive passes that end the game. The result is 
that the longest possible Go game has over 1^48 moves (10 followed by 48 zeroes). 3 

But who won? 
 
At the end of the longest possible game, all moves lead to repetition of some 

earlier position. The board at this point may look like complete chaos however, with 
many groups in atari. To ask who won is to miss the point. The scoring method is of 
no concern to counting games. You could even say the winner is the one who made 
the fewest passes; it doesn't change the number of possible move sequences. So we 
don't even specify any scoring method. It is of no concern to us.  

 
However, this game might run into time limits. According to one theory—the 

Big Freeze—if gravity fails to hold the universe together, there will only be another 
1000 trillion years before all matter disappears. After the stars run out of fuel, all 
protons will plunge into Black Holes and evaporate, and all that will be left are 
electrons, positrons, and neutrinos floating aimlessly around, ready for the next 
stage, whatever that might be. With about 32,000,000 seconds in a year, the players 
would have to move very, very fast, since there would just be thirty-one sextillion 
seconds (31 followed by only 21 zeros) left to play in.  

At the other end of the scale, since two consecutive passes at any point ends 
the games, the shortest possible one is 0 moves. Because no resignations are 
permitted, Black passes and then White passes. The next shortest game is Black 
plays, White passes, Black passes. Then the idea that there are 361 possible 
positions on a 19x19 board in this 1-move game leads into the question of the 
number of possible legal Go positions on other-sized boards. 

On a 2x2 board, 57 out of 81 positions or about 70% are legal.  
 

 
The illegal positions are X’d out 

  

                                                           
3 This still conforms with the Logical Tromp-Taylor rules http://senseis.xmp.net/?TrompTaylorRules  

http://senseis.xmp.net/?TrompTaylorRules
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However, as board-size increases, the percentage of legal positions naturally 
decreases with the result that on a 19x19 board, the figure would close to be about 
1% positions. This then brings up the question of how many that would be and how 
this would compare to Chess with its 8x8 board.  

 
What we do know is that the number of Go positions is many, many, many 

orders of magnitude larger, a 171-digit number versus a roughly 46-digit number for 
Chess. This dramatic comparison can only show so many orders of magnitude in 
difference. Even comparing the size of the universe with the size of the nucleus of an 
atom, that’s only a factor of 10^41, or 41 orders of magnitude. As you can see, the 125 
magnitude difference that Go positions have over Chess positions dwarfs that. However, 
the number for Chess is necessarily inexact because deciding the legality of a single 
Chess position can be arbitrarily hard and is the subject of so-called retrograde analysis. 
These are active areas of research for me and several friends that is restricted by the 
enormity of the computer power that is needed, so it may take a number of years. 

 
I asked about the oft-quoted Go adage that, “There are more possible Go games 

than there are atoms in the universe.” 4 
 
Actually, that statement is only about the number of legal Chess games and it 

vastly understates the situation. On a 2x2 Go board, despite the fact that there are only 
57 legal positions, there are 386,356,909,593 possible games! For the number of 
possible 19x19 games, we must resort to double exponentiation. We have found that 
on 19x19 boards, the lower bound for that number is 10^(10^48) , while the upper 
bound is a whopping 10^(10^171). As for positions, there are 3*361x0.011957528698 
x 10^170 possible positions that can appear on 19x19 boards while the number of 
atoms in the universe is only 10^80. [In fact, on a 13x13 board, the number of possible 
positions is about the number of atoms in the universe, while the approximate number 
on a 19x19 board is more than 1090 times that figure.] So now we are up to exact 
figures for the number of possible positions on 17x17 but it’s not final until I can do the 
exact computation for 19x19. :-)  

 
When it is finished, will this work have any applications or uses? 
 
None that I can think of . . . 

  

                                                           
4 http://senseis.xmp.net/?NumberOfPossibleGoGames  

http://senseis.xmp.net/?NumberOfPossibleGoGames
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Jan. 20, 2016: After 10 Years Enough Memory, Time, and Diskspace is 
Arranged so the Legal Number of Positions on  

19x19 is Finally Reached 
 
Each added line from 17x17 to 19x19 needed a five-fold increase in computer 

power, so on Jan 20, 2016 the number of legal positions called “L19” was at last 
determined to be 20816819938197998469947863 3344862770 
286522453884530548425639456820927419612738015378525648451698 519643 
90725991601562812854608988831442712971531931755773662039724706484 0935. 
Or, in a more compact form for the 171 digits:  

 
2081681993819799846 
9947863334486277028 
6522453884530548425 
6394568209274196127 
3801537852564845169 
8519643907259916015 
6281285460898883144 
2712971531931755773 
6620397247064840935 

 
This can be written more naturally in ternary. 5  
 

0 0 0 0 2 2 2 0 1 1 0 0 2 0 1 1 1 0 1 
2 1 1 2 1 2 0 0 2 1 2 1 0 0 0 2 2 0 2 
2 1 0 0 2 1 0 1 1 1 1 1 0 1 1 1 1 1 2 
0 0 2 2 0 1 1 0 2 0 0 1 2 1 0 2 0 1 0 
1 0 2 0 2 0 1 2 0 1 1 2 2 1 0 0 1 2 1 
1 0 0 0 1 1 1 2 0 2 2 0 0 0 2 0 1 2 2 
0 0 2 1 2 0 0 2 0 0 1 1 1 0 2 0 2 0 0 
0 0 2 2 0 2 2 2 0 0 0 2 1 0 1 0 0 0 2 
2 1 0 0 2 0 2 2 2 2 1 0 0 2 1 1 1 2 1 
2 0 0 1 0 2 2 1 2 1 1 2 2 0 2 0 1 2 0 
2 1 1 1 0 0 2 1 0 0 2 2 1 2 2 2 0 1 1 
2 2 1 2 0 1 1 1 0 2 0 1 2 0 2 2 2 0 2 
2 0 1 0 1 2 1 1 0 1 1 0 2 1 2 0 0 2 1 
2 0 0 0 1 2 2 1 1 2 0 2 2 0 0 1 0 1 0 
1 1 2 2 0 0 1 2 2 0 2 0 2 0 1 2 2 1 0 
2 0 1 0 0 1 1 0 2 1 2 1 2 1 1 0 2 2 0 
2 2 1 1 2 0 1 0 2 0 1 2 0 2 1 2 1 0 0 
0 0 0 1 1 2 2 1 0 2 1 0 1 0 2 1 1 2 0 
2 2 0 2 1 0 2 2 0 0 2 1 1 1 1 1 2 2 2  

                                                           
5 In decimal notation every position is weighted by a power of 10, binary uses powers of 2, and ternary uses 
powers of 3. For example, 201 denotes 2x9+0*3+1*1=19. 
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This is not only because the numbers used are simpler (0,1 and 2), but also 
because each point on the board can have three stages. Thus, for fun, by transposing 
the 0s into empty intersections, the 1s into black stones and the 2s into white stones, 
Dr. Tromp made a Go position out the possible number and noted that, not surprisingly, 
it would be an illegal one.  

 

 
 

Black stones at E18 and N9 lack “liberties,” making the position illegal which is 
no surprise since the probability of any position being legal is about 0.0000222 in 
ternary, close to 3^-4, or 1 in 81. 6 This 1.2% chance had already been computed by 
random sampling back in 1992 and the better approximation L19 ~ 2.081681994 
10^170 has been known since 2006. But it took 10 years of asking universities and big 
companies like Google and Amazon to get enough computer availability to nail it down 
to the last digit.  

 
 
A Computational Challenge is Helped by the Chinese Remainder Theory 

 
It is fun and customary to factor interesting numbers to see if they might be 

even more interesting. So what are the prime factors of L19 and how would we find 
them? Let’s start with the latter questions. The dumbest possible approach would have 
been repeated trial division. But this takes time exponential in the number of digits, 
making it completely infeasible for numbers of more than, say, 10 digits. Even allowing 
ourselves a million trillion steps, this would get us no further than the number 10^18, 
far short of L19. Instead, we needed to use an advanced algorithm like the General 

                                                           
6 That is, 0.0000222 is almost 0.0001 in ternary, which is 3^{-4} (the 1 is at position -4, so weighted by that power 
of 3), 3^{-4} = 1/3^4 = 1/81. 
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Number Field Sieve 7or the Elliptic Curve Method (ECM). 8 These still needed 
exponential time—but not in the number of digits itself, but rather in the cube root or 
square root thereof, thereby vastly extending the range of inputs on which they’re 
feasible in practice. 9  

Using an ECM implementation 10 courtesy of Dario Alejandro Alpern, I was able 
to factorize L19 in mere hours on my laptop. This yielded eight unique prime factors 
that when multiplied together gave L19 in 1,3,7,9,19,34,35, and 65 digits respectively:  

 
5 * 
401 * 
4821637 * 
964261621 * 
2824211368611548437 * 
2198466965002376001759613307922757 * 
65948646836807567941440434317404197 * 
54536540603346595211722061421378072820459376985314707345317470047 * 

 
The challenge of constructing rather than deconstructing L19 is surprisingly 

similar. Individually testing 3^361 positions for legality is as insane as doing trial 
divisions (while detecting illegalities early on during position generation is easy with this 
C source code, 11 it offers only slight improvements). Just as with factoring, we needed 
an advanced algorithm that was exponential not in the number of points, but in the 
square root of the number of board points which is its width on a square board. 

Gunnar Farnebäck and I developed just such an algorithm in the early 2000s. 
As described in detail in our 2016 paper “Combinatorics of Go,” it essentially reduces 
computing L19 to taking the 361st power of a very sparse matrix of 363 billion rows 
and columns 12 but the computational power required for this only became available to 
me last year.  

The matrix rows and columns represent so-called border states that describe all 
pertinent information about a cross section of the board, such as the presence of stones 
still needing liberties and how they are connected. Matrix powers represent counts of 
the number of paths from one border state to another. Each legal position uniquely 
corresponds to a path from the edge border state to one without stones with no 
liberties, as illustrated for this position on a 3x3 board: 

 

                                                           
7 https://en.wikipedia.org/wiki/Lenstra_elliptic_curve_factorization 
8 https://en.wikipedia.org/wiki/General_number_field_sieve 
9 If "feasible" computations are, for example, at most a million trillion steps (10^18), then the largest number that 
can be handled with an algorithm that is exponential in the number of digits is just 10^18. However, an algorithm 
that is exponential in the square-root of the number of digits can handle numbers as large as 10^324. 
10 From “Get the source code” at https://www.alpertron.com.ar/ECM.HTM  
11 See, for example, http://tromp.github.io/go/approx.c  
12 John Tromp & Gunnar Farnebäck; “Combinatorics of Go”; Lecture Notes in Computer Science Vol. 4630; Springer 
Books; 2016 http://tromp.github.io/go/gostate.pdf  

http://www.alpertron.com.ar/ECM.HTM
https://github.com/GunnarFarneback
http://tromp.github.io/go/gostate.pdf
https://en.wikipedia.org/wiki/Lenstra_elliptic_curve_factorization
https://en.wikipedia.org/wiki/General_number_field_sieve
https://www.alpertron.com.ar/ECM.HTM
http://tromp.github.io/go/approx.c
https://github.com/GunnarFarneback
http://link.springer.com/bookseries/558
http://tromp.github.io/go/gostate.pdf
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Clever use of the Chinese Remainder Theorem 13 allowed us to split the 
computation into 9 independent parts, each computing L19 modulo 2^64 minus some 
small number, contributing 64 bits of the 566 bit result. 14  

We started on March 6, 2015 by running on big servers at three places:  
 

• The IAS School of Natural Sciences in Princeton, where the L18 
computation was recently performed, generously provided by Piet Hut and 
administered by Lee Colbert 

• The IDA Center for Communications Research, on the other side of 
Princeton, generously offered by Michael Di Domenico, who spent many hours 
setting up, monitoring, streamlining, and patching the jobs, as well as helping 
improve the job flow scripts 

• The HP Helion Cloud, generously provided by HP courtesy of Eric 
Moore 
 
Suffering many hiccups and a few catastrophes, after generating an estimated 

30 petabytes 15 of disk IO (Input-Output), we now had the full 171 digits of precision 
and finished on December 26, 2015. It was a nice Day-After-Christmas event! It also 
took a few weeks into the New Year for me to get the log files, and so, it was a huge 
“Holiday Present” from all these people who helped make the computations possible!  

Many thanks also to Gunnar and Michal Koucký 16 for their contributions. Gunnar 
wrote a legal counting program in pike, 17 while Michal suggested the use of Chinese 
Remaindering, implemented a file-based program, and was a partner in obtaining the 
results for n=14,15,16 and 17.  

Thanks so much to all of you! 
 

 
 
 
 

                                                           
13 https://en.wikipedia.org/wiki/Chinese_remainder_theorem 
14 http://stackoverflow.com/questions/2664301/how-does-modulus-divison-work  
15 https://en.wikipedia.org/wiki/Petabyte 
16 http://iuuk.mff.cuni.cz/~koucky/ 
17 http://www.lysator.liu.se/~gunnar/legal.pike.txt  

http://en.wikipedia.org/wiki/Chinese_remainder_theorem
http://www.sns.ias.edu/computing
https://www.ids.ias.edu/%7Epiet/
http://www.idaccr.org/
http://www.linkedin.com/pub/michael-di-domenico/0/8b9/930/en
http://www8.hp.com/us/en/cloud/helion-overview.html
https://www.linkedin.com/in/emooreatx
https://www.linkedin.com/in/emooreatx
https://github.com/GunnarFarneback
http://iuuk.mff.cuni.cz/%7Ekoucky/
http://www.lysator.liu.se/%7Egunnar/legal.pike.txt
https://en.wikipedia.org/wiki/Chinese_remainder_theorem
http://stackoverflow.com/questions/2664301/how-does-modulus-divison-work
https://en.wikipedia.org/wiki/Petabyte
http://iuuk.mff.cuni.cz/%7Ekoucky/
http://www.lysator.liu.se/%7Egunnar/legal.pike.txt


8 
 

The Number of Legal 19 X n Go Positions in the  
On-Line Encyclopedia of Integer Sequences #AO94777 

 
1. 1 
 
2. 7 
 
3. 12675 
 
4. 24318165 
 
5. 414295148741 
 
6. 62567386502084877 
 
7. 83677847847984287628595 
 
8. 990966953618170260281935463385 
 
9. 103919148791293834318983090438798793469 
 
10. 96498428501909654589630887978835098088148177857 
 
11. 793474866816582266820936671790189132321673383112185151899 
 
12. 57774258489513238998237970307483999327287210756991189655942651331169 
 
13. 37249792307686396442294904767024517674249157948208717533254799550970 
595875237705 
 
14. 12667732900366224249789357650440598098805861083269127196623872213228 
196352455447575029701325 
 
15. 07514643083613831187684137548661238097337888203278444027646016628708 
83601711298309339239868998337801509491 
 
16. 81306696382275541642905602248429964648687410096724926394471959997560 
7459850502222039591149331431805524655467453067042377 
 
17. 90793889196281992046057261818504652201510583381479222439672692319440 
59187214767997105992341735209230667288462179090073659712583262087437 
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18. 97231142888292128927401888417065435099377806401787328103183376969456 
24428547218105214326012774371397184848890970111836283470468812827907149
926502347633 
 
19. 08168199381979984699478633344862770286522453884530548425639456820927 
41961273801537852564845169851964390725991601562812854608988831442712971 
5319317557736620397247064840935 
 

The entire table of the Legal Counts for 1-20 x n and for some rectangular board 
sizes can be found on Dr. Tromp’s website. 18 

 
 

A Googolplex of Possible 19x19 Games 
 

In addition, the lower bounds of the longest game were refined by Dr. Tromp 
and Mathieu Walaraet as well as the number of possible 19x19 games. 19 This is now 
over a googolplex, 20 a number that cannot be written with ordinary numbers because it 
would take more space than is available in the known universe. 21 

 
 

What is Next for Dr. Tromp? 
 
A writer for Vice’s Motherboard e-Magazine asked Dr. Tromp this question. 22  
 
. . . So after solving a mystery that's been unsolved [in the more than 2,000 years 

since the ancient Chinese first thought about it], what's next? Tromp tells me he plans to 
continue work on his “Cuckoo Cycle” 23 proof-of-work system and solve large-scale 
Connect Four 24 problems, but he's especially interested in improving his similar work 
on chess. 25 Chess, though, is a different beast. 

"The situation is very different with chess, in that we'll never know the exact 
number," he says. "Right now we don't even know the order of magnitude. I want to get 
to the point where we can at least say: the number is between 10^44 and 10^45." 
                                                           
18 http://tromp.github.io/go/legal.html#table. 
19 http://matthieuw.github.io/go-games-number/GoGamesNumber.pdf and Dr. Thorp’s paper. 
20 The term was invented by a 9-year nephew of a mathematician. When asked what he thought such a “silly” 
number as 10100 (1 followed by 100 zeros) should be called, after a short pause, he replied that is was a "Googol." 
Thus, later on, a “Googolplex” became 10 to the power of a googol (1 followed by 10 to the power of 100 zeros). 
As for “writing” it on a computer, since processor power doubles about every 1 to 2 years, any attempt would be 
overtaken by faster and faster processors which would go on for hundreds of years before they finally caught up. 
Looking for a domain name for their new company, one of Larry Page and Sergey Brin’s friends mistyped “Google” 
which was available, so corporate headquarters came to be called the GooglePlex. 
21 https://en.wikipedia.org/wiki/Googolplex#In_the_physical_universe  
22 http://motherboard.vice.com/author/LeifJohnson?Article_page=6  
23 https://github.com/tromp/cuckoo  
24 https://en.wikipedia.org/wiki/Connect_Four  
25 http://tromp.github.io/chess/chess.html 

http://tromp.github.io/go/legal.html#table
http://matthieuw.github.io/go-games-number/GoGamesNumber.pdf
https://en.wikipedia.org/wiki/Googolplex#In_the_physical_universe
http://motherboard.vice.com/author/LeifJohnson?Article_page=6
https://github.com/tromp/cuckoo
https://en.wikipedia.org/wiki/Connect_Four
http://tromp.github.io/chess/chess.html
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Which leaves the question of why? 
"Having the ability to determine the state complexity of the greatest abstract 

board game, and not doing it, that just doesn't sit right with me," Tromp says. "Or, as the 
great mathematician David Hilbert  26 proclaimed, ‘We must know—we will know!’" 

 
 

Verifiability of the Go Figures for Do-It-Yourselfers 
 
The software used for these computations is available at Dr. Tromp’s github 

repository. 27 Running "make" should compute L(3,3) in about a second. For running an 
L19 job, a beefy server with 15TB of fast scratch disk space, 8 to 16 cores, and 192GB 
of RAM is recommended. Expect a few months of running time. Please use a modulus 
index outside the set {0,1,2,3,4,5,6,11,19} that we used. The computation has many 
built-in checks to guard against memory and disk corruption. Values L(m,n) where 
n<m, are checked for matching L(n,m) (computed in a very different way), while all 
values L(m,n) have to closely match the approximation formula L(m,n) ~ 
0.8506399258457 * 0.965535059338374^{m+n} * 2.9757341920433572493^{m*n} 
that is derived from earlier results. Finally, application of the Chinese Remainder 
Theorem provides an important safeguard in that a tiny change in any of the inputs 
results in a huge change of output. 

 
 

A Good Server Benchmark? 
 

In 2010, Dr. Tromp did not think there would be any uses for his work and 
interests but now that the summit has been climbed, there indeed seems to be several. 

For example, Go counting would make a decent server benchmark: 
 

• The task is well defined, easily understood, and non-artificial. 
• The program code is small and self-contained. 
• The generated data sets are huge. 
• The problem is a typical instance of map-reduce, and thus 

representative of a wide class of popular problems. 
• The computation requires a good balance of multi-core processing 

power, memory for sorting, and disk-IO. 
• The board size parameter gives an entire family of benchmarks, 

where each increment corresponds to a factor of about 5 in effort. 

 
 

                                                           
26 https://en.wikipedia.org/wiki/David_Hilbert 
27 https://github.com/tromp/golegal 

 

https://github.com/tromp/golegal
https://github.com/tromp/golegal
https://en.wikipedia.org/wiki/David_Hilbert
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