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Computer go has indeed become super computer go.  An email 

on August 9, 2011  to the Computer-Go Digest  e-group from Hiroshi 
Yamashita  sums up the progress and what might happen before too  
long. (Of course, not everyone on the list agreed!) 
 
I made a graph of the KGS highest ranked Bots 
http://www.yss-aya.com/kgs_botrank.png 
We have a rank increase of 1.5d / year, since 2007: 

 
2006/11           4-6k GnuGo and Handtalk 
2007/10           2k Crazy Stone 
2008/02           1k Crazy Stone 
2009/03           1d Zen 
2009/06           2d Zen 
2010/08           3d Zen 
2010/12           4d Zen 
2011/04-05       5d Crazy Stone and Zen 
http://senseis.xmp.net/?KGSBotRatings 
 

If this pace is continued, we can see X-day in four years. 
 
2012                 6.5d 
2013                 8d 
2014                 9.5d 
2015                 11d      Human Champion? 

http://www.yss-aya.com/kgs_botrank.png
http://senseis.xmp.net/?KGSBotRatings


 2 2

 

 

2008 Super Computer Go: 
Interviews with the Authors of 

CrazyStone, MoGo and Many Faces of 
Go 

 
By Peter Shotwell 

© 2008 
 

Rémi Coulom of CrazyStone 
 

Feb. 2008 
 
Recently, there have been stunning developments in computer 

play that is based on earlier work in human temporal difference 
learning. What follows does not pretend to be comprehensive, and I 
don’t pretend to be an expert, although Rémi Coulom, developer of 
Crazy Stone, the world’s strongest computer go program, graciously 
looked this article over and made some comments. However, all 
mistakes are mine, so please read this only as a portal into what has 
turned out to be a better method than the classical hand coding that 
has dominated computer go programming for so long.  

Back in 1994, an article appeared in Advances in Neural 
Information Processing: ‘Temporal Difference Learning of Position 
Evaluation in the Game of Go’ by N.N. Schraudolph, P. Dayan and 
T.J. Sejnowski of the Computational Neurobiology Laboratory of The 
Salk Institute for Biological Studies in San Diego. Their abstract read: 

 
The game of go has a high branching factor that defeats the 

tree search approach used in computer chess, and long-range 
spatiotemporal interactions that make position evaluation extremely 
difficult. Development of conventional go programs is hampered by 
their knowledge-intensive nature. We demonstrate a viable 
alternative by training networks to evaluate go positions via temporal 
difference (TD) learning. 
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Our approach is based on network architectures that reflect the 
spatial organization of both input and reinforcement signals on the go 
board, and training protocols that provide exposure to competent 
(though unlabelled) play. These techniques yield far better 
performance than undifferentiated networks trained by self play 
alone. A network with less than 500 weights learned within 3,000 
games of 9x9 go a position evaluation function that enables a 
primitive one-ply search to defeat a commercial go program at a low 
playing level. 

 
Coming up to 2007, the Wikipedia article on ‘Temporal 

Difference Learning’ discussed the situation:  
 
Temporal difference learning is a prediction method. It has 

been mostly used for solving the reinforcement learning problem. TD 
learning is a combination of Monte Carlo ideas and dynamic 
programming (DP) ideas. TD resembles a Monte Carlo method 
because it learns by sampling the environment according to some 
policy. TD is related to dynamic programming techniques because it 
approximates its current estimate based on previously learned 
estimates (a process known as bootstrapping). The TD learning 
algorithm is related to the Temporal difference model of animal 
learning. 

The TD algorithm has also received attention in the field of 
Neuroscience. Researchers discovered that the firing rate of 
dopamine neurons in the ventral tegmental area (VTA) and 
substantia nigra (SNc) appear to mimic the error function in the 
algorithm. The error function reports back the difference between the 
estimated reward at any given state or time step and the actual 
reward received. The larger the error function the larger the 
difference between the expected and actual reward. When this is 
paired with a stimulus that accurately reflects a future reward the 
error can be used to associate the stimulus with the future reward. 

Dopamine cells appear to behave in a similar manner. In one 
experiment measurements of dopamine cells were made while 
training a monkey to associate a stimulus with the reward of juice. 
Initially the dopamine cells increased firing rates when exposed to 
the juice, indicating a difference in expected and actual rewards. 
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Over time this increase in firing back propagated to the earliest 
reliable stimulus for the reward. Once the monkey was fully trained 
the dopamine cells stopped firing. This mimics closely how the error 
function in TD is used for reinforcement learning. 

The relationship between the model and potential neurological 
function has produced research attempting to use TD to explain 
many aspects of behavioral research. It has also been used to study 
conditions such as schizophrenia or the consequences of 
pharmacological manipulations of dopamine on learning.  

 
The ‘Computer Go’ article in Wikipedia explains that:  
 
One major alternative to using hand-coded knowledge and 

searches is the use of Monte-Carlo methods. This is done by 
generating a list of potential moves, and for each move playing out 
thousands of games at random on the resulting board. The move 
which leads to the best set of random games for the current player is 
chosen as the best move. The advantage of this technique is that it 
requires very little domain knowledge or expert input, the tradeoff 
being increased memory and processor requirements. However, 
because the moves used for evaluation are generated at random it is 
possible that a move which would be excellent except for one specific 
opponent response would be mistakenly evaluated as a good move. 
The result of this are programs which are strong in an overall 
strategic sense, but are weak tactically. This problem can be 
mitigated by adding some domain knowledge in the move generation 
and a greater level of search depth on top of the random 
[evaluation]. Some programs which use Monte-Carlo techniques are 
MoGo and CrazyStone. 

In 2006, a new search technique, upper confidence bounds 
applied to trees (UCT), was developed and applied to many 9x9 
Monte-Carlo go programs with excellent results. UCT uses the results 
of the play outs collected so far to guide the search along the more 
successful lines of play, while still allowing alternative lines to be 
explored. . . .  

In 2007, Rémi Coulom developed a new method of generating 
candidate moves for the UCT algorithm based upon machine analysis 
of ELO scores/past games. As a result of these changes, CrazyStone 
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has shown an improvement of roughly 600 ELO points on the CGOS 
server. . . . [As of December 2007, the rankings given in the rest of 
the article are outdated— CrazyStone, which won the December 2007 
UEC championship with a perfect record was a 2-kyu on KGS.] 

 
Late in 2006, Coulom explained his methods to Wired 

magazine: 
 

Wired News: What makes programming go so much tougher than 
chess? 

Remí Coulom: In go, you don't capture pieces, and so it's very 
difficult to say that black is ahead or white is ahead just by looking at 
the board. In order to survive, a group of stones needs to surround 
two ‘eyes’—empty areas that can't be invaded by the opponent. 

On a 19-by-19(-line) board, you'll have plenty of stones whose 
life or death status is undecided, and this is extremely difficult to 
analyze statically. This is different from the situation with chess or 
(checkers), where you can look at the board and say, ‘I have one 
more pawn than you.’ 

WN: What are ‘Monte Carlo’ methods and how do they apply to go? 
 
Coulom: Monte Carlo methods are named after a quarter of Monaco 
that's famous for its casinos. In the case of go, the basic idea goes 
like this: To evaluate a potential move, you simulate thousands of 
random games. And if black tends to win more often than white, 
then you know that move is favorable to black. 
 
WN: With 250 moves in a typical game, that must take a lot of 
computational power. 

Coulom: The version of CrazyStone in the Torino Olympiad [in 2006] 
ran on a four-CPU machine—two dual-core AMD Opterons at 2.2 
GHz—and did about 50,000 random games per second. Unlike 
traditional algorithms, the Monte Carlo approach is extremely easy to 
parallelize, so it can take advantage of the multi-core architecture of 
the new generation of processors. 
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WN: CrazyStone was not the first program to use Monte Carlo 
methods, but it was successful enough that it started a trend among 
go programmers. What was your innovation? 

Coulom: Because you can't sample every possible random game, the 
Monte Carlo algorithm can easily fail to find the best moves. For 
instance, if most of the random games resulting from a certain move 
are losses, but one is a guaranteed win, the basic algorithm would 
take the average of those games and still evaluate it as a bad 
position. 

CrazyStone is clever enough to avoid this problem. When it 
notices that one sequence of moves looks better than the others, it 
tends to play it more often in the random games. 

 
WN: Why have people like Nick Wedd, the moderator of the monthly 
KGS tournaments, complained that watching games played by Monte 
Carlo programs can be boring? 
 
Coulom: Monte Carlo programs maximize the probability of winning, 
not the margin that they win by. When they're very far ahead of the 
opponent, then they'll always play a safe move, which might look 
boring compared to more aggressive alternatives. It may be boring to 
watch, but it's more efficient in winning games. 
 
WN: I've heard that a lot of the top go programs are written by top 
go players. What's your experience with the game? 
 
Coulom: Before I started to write my first go program, I decided I 
was going to play well enough to beat the other programs out there. 
But I don't think being a strong player is important to write a strong 
program. When I was still programming chess, this was obvious: my 
program was immensely stronger than me. 

Some of the programs out there do use these set sequences of 
play, called joseki, but I avoid hard-coding this knowledge. I see 
some programs blunder because they blindly apply a hard-coded 
pattern. 
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At the 2007 European Congress, Martin Meuller, one of the 
leading developers and commentators on computer go, gave a 
lecture summing up the current state of the art of computers that 
play go. His website is 
http://www.cs.ualberta.ca/~mmueller/cgo/villach2007.html  

 
From the report in the July 23, 2007 American Go Association 

E-journal: 
 
Last year, Guo Juan 5P played a series against CrazyStone on a 

7x7 board in which the program always won or got a jigo when 
playing white against the pro; this year MoGo scored 9 wins and 5 
losses against Guo Juan on a 9x9 board. ‘Monte Carlo programs play 
many strange moves,’ conceded Mueller, ‘but they’re very good at 
winning. All without a single line of programming.’ Such programs 
run as many as 100,000 simulations—or 1 million moves per 
second—for each move in a 9x9 game.  

When asked about these figures, Coulom kindly responded in 
an email:  

 
A playout for 9x9 is about 100 moves. . . . The fastest MC 

program I know does indeed do 100,000 simulations per second (that 
is Libego, by Lukasz Lew). But that means 10 million moves per 
second. 1 simulation = about 100 moves. 10,000 simulations per 
second is typical (when running on one core). 

 
The AGA interview continues: 

‘Why does it work so well?’ Mueller asked. ‘There’s no 
theoretical explanation, although we have excellent empirical results.’ 
In other words, a broadly grinning Mueller said, ‘We don’t really 
know.’ Although Mueller said that many researchers now think it’s 
‘just a matter of time before there’s a professional-level go-playing 
program,’ he thinks it may be farther off. ‘My own feeling is that we 
need one or two more good ideas, but where they’ll come from I 
don’t know.’ 

 
* * * * * 

http://www.cs.ualberta.ca/~mmueller/cgo/villach2007.html
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Further information about UCT can be found at 

http://senseis.xmp.net/?UCT and at Rémi Coulom’s website, 
http://remi.coulom.free.fr/Amsterdam2007.  

For an ongoing, day-to-day, bird’s eye view of where these new 
ideas might come from, you can subscribe to the computer go 
discussion list at 
http://hosting.midvalleyhosting.com/mailman/listinfo/computer-go 

http://senseis.xmp.net/?UCT
http://remi.coulom.free.fr/Amsterdam2007
http://hosting.midvalleyhosting.com/mailman/listinfo/computer-go
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Olivier Teytaud of MoGo 
 

June 2008  
 

At the beginning of the year, I posted an appendix to my 
Cognitive Psychology article in the Bob High Library on the AGA 
website. It ended with a discussion of how human learning studies 
spurred on the Monte Carlo method of programming, which is now 
being successfully used in many fields. Like the game of Battleship is 
played, in go the position of the next move is largely based on the 
win-lose results at the end of the playouts of almost random 
searches of future moves. These choices are modified by introducing 
a certain amount of previous ‘history,’ meaning the factoring in of the 
proximity to the last move, adding off-line pattern values taken from 
thousands of pro games, and estimating the amounts that can be 
captured or escape. If a certain move leads to 80% wins or more in 
the search tree, it is played, and can lead to usually impressive (or, 
sometimes disastrous) results.  

Invented during the Manhattan Project of World War II and 
now using enormous search speeds and sometimes multi-core or 
message-passing parallelization, the Monte Carlo approach is much 
faster than the ‘simple’ memory-crunching computers that have 
beaten the best chess players. It also began outdistancing the 
‘classical’ human knowledge-based go programs when the Upper 
Confidence Trees (UCT) algorithm was added in 2006.  

In using UCT, different moves within the game tree search are 
treated like ‘one-armed bandit’ slot machines that return random 
results—but, unlike in casinos, where the machines are finely tuned, 
the results on some bandits are better than others. Because of this, 
the famous Exploration-Exploitation Dilemma arises and choices have 
to be made between making what seems to be a good move now (by 
pulling the arm of a previously high-paying bandit), or spending time 
playing other bandits which might (or might not) produce a better 
pay-off.  

In humans, the process of resolving the Dilemma is called 
Temporal Difference Learning, which combines the Monte Carlo 
method with dynamic programming (DP) ideas (the ‘programming’ is 
mathematical optimization and has nothing to do with computer 
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programming). In Temporal Difference Learning, MRI studies show 
how different parts of the brain start working against each other to 
narrow down our choices about future actions. However, it is 
important to note that in these studies, the emphasis is not on how 
the brain makes the best judgment—the traditional approach—but 
how it reduces its ‘regret’ for making wrong choices.  

In the world of ‘thinking’ machines, algorithms called Rapid 
Action Value Estimations (RAVE) were developed to solve the 
problem of the Dilemma. And in the business world, Behavioral 
Targeting algorithms try to figure out profitable ‘moves’ for 
companies by predicting the behavior of opposing customer ‘players’ 
who are making choices about such things as what to buy or where 
to go on the Internet. 

Dr. Olivier Teytaud of the University of Paris is one of the 
developers of MoGo, the first program to beat a professional on 9x9 
and the first to achieve a 1-dan rank on KGS in 19x19 ten-minute-a-
side games. He generously responded to my email questions about 
what is happening on the front lines of computer go.  

 
MoGo improves everyday. The version of yesterday evening 

wins with probability 57% against the version of yesterday morning 
(OK, it's not so nice everyday :-) ). 

Most of the MoGo team are not go players and there is very 
little math involved. All the efficient programs, as far as I know, use 
the following elements: 

 
 A Monte-Carlo simulator for evaluating roughly the quality of a 

position. This method simulates a random game several times, 
from an initial position, in order to have a preliminary idea of its 
value. 

 An incremental building of a tree of situations, representing 
possible future states; a main part of the algorithm is the so-called 
’bandit-part,’ which triggers the compromise between exploration 
(trend to analyze more carefully the situations which are less 
analyzed than other situations) and exploitation (trend to analyze 
more carefully the situations which are the most likely). 

 In all successful programs, the Monte-Carlo part is biased through 
patterns. In fact, one of the main recent improvements consists in 
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reducing the bias—as we improve the computational power 
(thanks to parallelization), we must reduce the bias induced by the 
patterns of the Monte-Carlo part. 

 In all successful programs also there are correlations between one 
move and the next move in the Monte-Carlo part. This seems to 
be absolutely necessary. Some programs include a dependency 
with respect to the two previous moves. This is an important 
achievement of the early MoGo team, interestingly analyzed in the 
Ph.D. thesis of Sylvain Gelly. 

 At least Leela, MoGo, CrazyStone, and probably some others have 
an SMP parallelization (the Symmetric Multiprocessing of many 
computers).  

 In some programs, some bias is introduced in the tree exploration; 
we a priori prefer moves which match some known patterns, or 
some rules (e.g., is it worth considering the possibility of a ko, or 
an atari?); from this point of view MoGo was quite weak until a 
recent date, but now it is much better. Mango and CrazyStone are 
top-level programs from this point of view.  

  
The following elements are less widely used but are also 

important tricks: 
 

 In some programs (e.g. MoGo), a so-called RAVE heuristic 
approximates the value of a sequence of moves by the value of a 
permutation of an already analyzed sequence of moves. This part 
is very efficient in MoGo, and is probably a main reason for the 
efficiency of MoGo on small boards—for small boards, I guess 
MoGo is currently the best program whenever we do not use the 
MPI-parallelization (the Message Passing Interface which keeps 
the Central Processing Units [the CPUs] from interfering with each 
other’s work). 

 Some programs also use a parallelization without shared memory. 
This is far less intuitive but quite efficient, particularly in 19x19. 
Thanks to this parallelization, MoGo can be quite strong in 19x19; 
it recently reached 1-dan on KGS with 64 quad-core machines on 
blitz games (10 minutes per side). We have not yet experimented 
with longer time settings—the priority for the moment is the 
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‘merging’ of all the improvements developed by various people 
into only one version of MoGo. 

 In 9x9, openings are very important. This part is not yet stable in 
MoGo, but already provides significant improvement, in particular 
for fast games. For long time settings, the improvement is 
negligible, but we're working optimistically on it! 

 
Many elements are not well understood. Essentially, very 

important modifications in the Monte-Carlo methods come from trial 
and error. Even the UCT part, which was the most clearly 
understood, is now outperformed by new methods. A particularly 
disappointing point is that we cannot estimate the quality of our 
moves: we don't know when we are sure that MoGo is going to 
choose a good move. This is quite important, as this could provide a 
tool for choosing the time used for a given move: when we are not 
sure of a move, we might want to spend a few more minutes on it. 
Humans spend a lot of time on some moves, and not at all on some 
other moves—whereas MoGo spends almost exactly the same time 
on all moves—there is just a regular decrease of time per move 
during the game. This is a strong weakness in all current 
implementations. 

 
Some recent directions are as follows: 
 

 First, MoGo is sufficiently strong for benefiting from classical 
opening books in 19x19. This was false until a recent date. 

 Second, we can now tune MoGo, and probably other strong 
programs as well, so that it solves Tsumego. This is much easier 
than tuning it by self-play, because self-play is highly time-
consuming, and makes sense only now—when MoGo was 10-kyu, 
it was meaningless to try to make it solve difficult Tsumego.  

 As well as many programs, MoGo was playing a so-called ‘cosmic,’ 
center-oriented style; now, it is much more classical (and 
stronger). But another trouble, which still holds, is that MoGo is 
too aggressive. It is quite efficient in killing groups, but it also tries 
this against groups which are clearly alive. Modifying the Monte-
Carlo part might be a good solution for that. 
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 Large-scale parallelization is possible in 19x19. MoGo would be 
much, much, much stronger if we had access to huge machines 
(technically speaking, to big clusters of SMP with good switches) 
and this looks like a possibility early this fall. 

  
To explain further, a multi-core machine has several cores 

accessing the same memory and there is no need for messages 
between cores, whereas a cluster is made of processors like Disk 
Sectors, each of them working on its own memory. Multi-core 
parallelization is a priori easier, but the number of cores on the same 
machine is limited to a few cores sharing the same memory because 
they interfere with each other, whereas a cluster can be made of 
thousands of cores. The parallelization on a cluster is much more 
difficult and much more recent in Monte-Carlo go, and can be applied 
efficiently with much bigger machines. This is the main strength of 
MoGo; MoGo was the first code with a very efficient parallelization on 
clusters. I guess many programs will have such a parallelization soon. 
MoGo combines both parallelizations producing a cluster of multi-core 
machines. For example, the cluster used for games against the 
professional Catalin Taranu was made of 32 machines, each of them 
having eight cores. The eight cores of each machine work on the 
same memory, but in order to work together, the 32 machines have 
to communicate by sending messages. This is very slow on standard 
networks, but some specialized networks, based on fast cards and 
fast switches, are much better. 

As for how all this developed, as far as I know from the 
published papers, the basic idea of mixing bandit techniques and 
Monte-Carlo simulations came from Rémi Coulom (the author of 
CrazyStone); UCT comes from MoGo and is also now in CrazyStone; 
Progressive widening (the 'unpruning' of possible moves that had 
been discarded, sometimes because threats have been uncovered 
from other searches) has been introduced in CrazyStone and Mango. 

The RAVE heuristic comes from MoGo and is incorporated in 
Leela, but not in CrazyStone or Mango; Correlations between 
successive moves in the Monte-Carlo part were initially introduced in 
MoGo and is now also used in CrazyStone, Leela, Mango and all 
successful algorithms; as mentioned, Multi-node Message-Passing 
Parallelization has been introduced in MoGo and not yet in 
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CrazyStone, Leela, or Mango; Expert knowledge as a bias in the 
bandit was first introduced in CrazyStone and is not yet very 
developed in MoGo, but we are working on it.  

I want to point out that we do not consider MoGo as only the 
result of our work. Instead, it’s the result of plenty of contributors, 
including go players, computer-scientists, mathematicians, from 
several countries, the authors from Mango, CrazyStone and UCT, and 
members of the University of Alberta in Canada.  

Lastly, MoGo is not just a program for computer-go because we 
are developing several other applications with the same algorithm. 
For example, the same techniques as those employed in MoGo can 
be used in resource management, such as deciding which resource 
should be used for producing electricity. Choosing the next move in 
go is analogous to choosing the next reservoir to be used, (such as 
hydroelectricity, nuclear plants, etc.), and winning a go game is 
analogous to the saving of money and the reduction of the 
environmental impact of electricity management. 

 
* * * * * 

 
A free version of MoGo can be downloaded at 

http://www.lri.fr/~gelly  
 
Leela can be bought at http://www.sjeng.org/leela.html 
 
See also: http://www.pascal-network.org/article4.pdf and 

http://www.lri.fr/~teytaud/crmogo.en.html  
 
For games of MoGo vs. humans, see 

http://www.Iri.fr/~teyaud/iago  
 
For a game between MoGo and CrazyStone, see http://project-

oz.com/public_html/article.php?story=20080127044215866 
 
Dr. Teyaud has recently updated the Wikipedia article on 

computer go at http://en.wikipedia.org/wiki/Computer_Go 
 

http://www.lri.fr/~gelly
http://www.sjeng.org/leela.html
http://www.pascal-network.org/article4.pdf
http://www.lri.fr/~teytaud/crmogo.en.html
http://www.iri.fr/~teyaud/iago
http://project-oz.com/public_html/article.php?story=20080127044215866
http://project-oz.com/public_html/article.php?story=20080127044215866
http://en.wikipedia.org/wiki/Computer_Go
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For the names and authors of the almost 100 go programs 
running on KGS, go to http://www.weddslist.com/kgs/names.html 

 
For Temporal Difference Learning, see the Wikipedia article at 

http://en.wikipedia.org/wiki/Temporal_difference_learning  
 

For MRI research on human learning, see, for example, 
http://neurodudes.com/2006/06/22/softmax-rule-for-exploration-
exploitation/ 
 

 
For a dictionary of computer terms, go to www.webopedia.com 
 
 
For a good, detailed explanation of UCT that I became aware of 

too late to utilize in this paper, along with a visualization of its playing 
Othello while ‘knowing’ nothing but the rules, see 
http://www.hvergi.net/2008/06/visualizing-gameplaying-algorithms  
 

 

http://www.weddslist.com/kgs/names.html
http://en.wikipedia.org/wiki/Temporal_difference_learning
http://neurodudes.com/2006/06/22/softmax-rule-for-exploration-exploitation/
http://neurodudes.com/2006/06/22/softmax-rule-for-exploration-exploitation/
http://www.webopedia.com/
http://www.hvergi.net/2008/06/visualizing-gameplaying-algorithms
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David Fotland of Many Faces of Go 
 

Dec. 2008 

 
David Fotland started seriously playing go in 1980 and, since he 

was interested in artificial intelligence, was soon at work on a go 
program. His first version couldn’t fight, but the second, which he 
called ‘Many Faces of Go,’ could, and it evolved over the years into 
today’s 9x9 and 19x19 world champion. This was a remarkable feat, 
since as late as the end of 2007, his knowledge-based program had 
fallen considerably behind the new Monte Carlo approaches.  

In December 2008, as a continuation of the interviews with 
Rémi Coulom of CrazyStone and Olivier Teytaud of Mogo, I asked 
David how he did it. His emailed answers are slightly edited and 
cobbled with some comments from the computer-go email chat 
group. Square Brackets [ ] indicate my additions.  

 
It was a lot of fun working hard on something new that was 

going to be much stronger. There were a lot of new interesting 
problems to solve. 

I’d been working on computer go since about 1982. As the 
power and memory of computers increased thousands of times, the 
optimal algorithms have changed. In the beginning it was important 
to design very small data structures to fit in about 400 K Bytes on 
DOS. Now Monte Carlo programs need hundreds of megabytes.  

I’d won the Ing world championship in 1998 and the 21st 
Century cup in 2002. The big world championships were a large part 
of my motivation, and when they ended I spent much less time on 
my program. The traditional go programs are knowledge-based and 
very complex. As Many Faces got stronger it took more and more 
effort to get additional strength from it. So I took a couple of years 
off to write the world champion arimaa program. 

Monte Carlo go had been tried since Brugmann in 1993 without 
much success, so I didn’t expect much from the new Monte Carlo 
programs like CrazyStone and Mogo. They got strong quickly at 9x9, 
but didn’t have much success at 19x19. 

In 2006 and 2007 I was working to add a full board search to 
Many Faces. In late 2007 it was about two stones stronger than 
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Version 11 and I was preparing to release it. Then in December 
CrazyStone won the UEC cup 19x19 contest. That convinced me that 
Monte Carlo/UCT was stronger than traditional programs and I 
decided to replace my full board alpha-beta search with Monte Carlo 
Tree Search (MCTS). 

I studied all the literature and thought about it, and started 
coding in February 2008. In early April my Japanese publisher said 
they wanted an MCTS program by the end of June, so I started 
working on it about 50 hours a week. 

I tried more than 400 variations on the basic UCT algorithm or 
playout strategy during this half-year of intensive development. The 
engine was written in C and tuned from the start for performance. I 
couldn't have done this many experiments (often several per day), 
without a very fast engine, because I used 1000 game contests to 
see if there was improvement with statistically significant results. Part 
of the reason I won is because the basic UCT/MC is so fast that I can 
incorporate the slow Many Faces knowledge and still get over 10K 
playouts per second per CPU on 9x9. 

The machines used in the ICGA World Championship are in 
Redmond, at Microsoft. It's a 4x8-core XEON, with 16 GB per core 
and 40 Gbps Inifinband networks. I’m very grateful to John Costello 
and Shahrokh Mortazavi who work on Microsoft’s High Performance 
Computing operating system for large clusters of CPUs.  

In April, John contacted me and asked if I would be interested 
in creating a scalable version of Many Faces for their operating 
system as a demo. This supercomputer version of Many Faces will be 
available free to Microsoft’s supercomputer customers. In exchange 
they agreed to make cluster time available for computer go contests. 
I started writing the supercomputer code in August. Mogo scales to 
hundreds of cores, and I had hoped to duplicate that for the world 
championship in Beijing, but I never got the code to scale beyond 32 
cores. Currently with more cores it plays weaker, but that should be 
fixed soon and, if the test results are good, I’m going to use 
Windows HPC server 2008 which Microsoft has just released. It is a 
server operating system for high performance clusters and their MPI 
implementation is about 10% faster than Linux on the huge 
machines with thousands of cores. A video of the Demo is at 
http://www.youtube.com/watch?v=Qe0o-IvHOa0.  

http://www.youtube.com/watch?v=Qe0o-IvHOa0
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Olivier Teytaud once commented in the computer-go group 

about the machine that runs Mogo:  
Huygens, has 3328 cores but  ‘ . . . Mogo was allowed to use 

800 cores, not more, and only for games against humans. We have 
no access to so many cores for computer-computer games (if there 
were only three teams involved, we could :-) ). For some games 
Huygens was unavailable at all, and Mogo played with much weaker 
hardware (some quad-cores, however, it is not so bad :-) 

 
David continues: 
 
When I won two gold medals in Beijing I decided to introduce 

the program immediately, as a preliminary version first, then a final 
version in early November. Now, in December, I’m back to working 
on the engine. Its strength is due to several things.  

First, a very fast playout engine. The more random games, the 
stronger the program. Second, a disciplined engineering approach to 
development. Third, the publications by the authors of CrazyStone, 
Mogo, and Mango, explaining their algorithms.  

My UCT implementation is a little different from any of them, 
and combines ideas from all of them with some original work of my 
own. Fourth, effectively using the Many Faces knowledge in the 
search. On 19x19, Many Faces plays with a more human style than 
the other programs using MCTS. 

In a single machine like a quad core PC, a single search can be 
shared by all cores, with common data in memory. In a bigger 
machine, a network is used to share data. Separate searches on each 
node exchange data as they work.   Evaluation has always been the 
tough unsolved issue in computer go. Certainly most of go 
programming time for over ten years was spent working on the 
evaluation function. MCTS eliminates the evaluation entirely. The old 
Many Faces evaluated 100 positions a second. The new one plays 
tens of thousands of full games each second.  

Monte Carlo by itself does not make a strong program, 
however. The tree search, AMAF/RAVE algorithm, local move bias, 
progressive widening, and many other enhancements that make up 
MCTS are what makes the new idea work. They would not have been 
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discovered without the collaboration of many researchers, and the 
encouragement from Don Dailey’s CGOS go server. 

What made the modern MCTS systems so strong were four 
breakthroughs by the French researchers of Mogo, CrazyStone and 
others. They solved the bandit problem, by recognizing that the 
random playouts should be more frequent for the best moves; the 
tree search, by recursively applying the bandit algorithm at each 
node in the search; by recognizing that the playouts should include 
local move sequences, and not be pure random; and by biasing the 
tree search with some prior go knowledge.  

Thus, all of the MCTS programs have some means of biasing 
the UCT part of the search to focus quickly on good moves. Mogo 
uses RAVE. CrazyStone uses patterns learned from professional 
games. I use Many Faces' go knowledge. Many Faces knows a lot 
about shapes and fighting, so this makes it a stronger fighter than 
the other programs. It also makes its moves look more human-like or 
natural. 

They also all use random games to gather statistics to evaluate 
win-rates for positions. But these random games are not purely 
random. For example moves are not allowed to fill eyes. All programs 
have some way to bias the random move generator to make the 
random games more sensible, for example favoring moves near the 
last move. The details are different for each program. 

As for bandwidth in the supercomputer version, my approach 
and Mogo’s are similar, but I just exchange less information than 
they do. They scale better than I do to many cores, and it might be 
because they share more information. It's more likely that my 
approach will resemble Mogo's because they scale better. Since they 
publish their approach and I don't, they can't really adopt mine.  

By the way, I don't see much similarity between temporal 
difference learning and MCTS. It's possible to use TD to learn 
patterns for use in later games, but I don't do that. All of the Many 
Faces' knowledge is hand created by me (more like an expert 
system). Many Faces learns joseki and openings from games it plays, 
but that is rote memorizations, not TD. Rémi used a learning 
algorithm to find good patterns for MCTS that worked very well, but 
it was not TD, either. 
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Go seems particularly suited for MCTS and I’m sure it will be 
effective in some other games, but I can’t predict which ones. I've 
thought about using MCTS for arimaa, and it might be better than 
alpha-beta. arimaa has a huge branching factor, and since the pieces 
move slowly, human long-term planning works well against 
computers. MCTS prunes better, so it should get deeper Principal 
Variations. AMAF might help too, since, in a long plan, it is often not 
critical what order the moves are in. 

I don't think we will know how well MCTS works with arimaa 
until someone tries it, but there are some things that make MCTS 
work well for go that don't apply. The AMAF or RAVE concept helps 
the search converge quickly. This algorithm assumes that good 
moves made later in a game are likely to also be good moves now. 
So when a random game is played, all the moves in the game that 
lead to a win are weighted higher at the current position. This 
assumption is often right for go, but doesn't work so well for games 
like chess or arimaa where the pieces move. 

Arimaa is different enough from chess or go that the 
techniques used for either don't apply directly. For my program I 
used a chess-like alpha-beta search, but with a smart go-like 
evaluation. 

As for an @home approach, I don’t think this will work for go 
since the bandwidth between home computers is more than 1000 
times lower than in a supercomputer cluster. The @home systems 
work great for big problems that do not have time constraints but 
game playing is interactive and people expect reasonably quick 
replies. The problem with @home computational models is that you 
never know when the user will want their machine back, so you have 
the problem of deciding if a result is worth waiting for, or if you will 
send similar requests to multiple machines just to try and be sure 
that you get at least one reply. 

I was contacted by someone in the Govt. of Singapore about 
trying exactly this (Go@home) and while it is interesting, it is not 
nearly as simple as SETI@ home [Search for Extra-Terrestrial 
Intelligence], where independent problems are being solved on [over 
three million] different machines. You do not expect to get the 
answer back to the primary server on any particular schedule. In go 
the answers are interdependent. 
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Incidentally, for the record, it seems likely now that the correct 
komi for 9x9 is 7.0. If so, I'd prefer 6.5 komi to 7.5, since 6.5 would 
have Black winning most games, and most other games have a first 
player advantage. This would give 9x9 go a similar first player 
advantage. 

 
I learned from the papers by the Mogo team and Rémi, the 

Mango papers at  
http://www.cs.unimaas.nl/go4go/mango/index.htm and the survey 
papers by Bouzy at 

http://www.math-info.univ-paris5.fr/~bouzy/publications.html.  
The computer-go group archives are also very useful at 

http://computer-go.org/pipermail/computer-go/2005-
December/004193.html. 

The Wikipedia article for Arimaa is good and has the URL for 
playing at http://en.wikipedia.org/wiki/arimaa. 

 
* * * * * 

 
David Fotland’s home page, where Many Faces of Go can be 

purchased, is at http://www.smart-games.com. 
His free 9x9 interactive program can be found at  

http://www.smart-games.com/igowin.html. It is knowledge-based 
and scaled down so it becomes an excellent graded interactive 
teaching tool. 
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