
 

 
 

Appendix II 
 

2011 Super Computer Go: 

Shih-Chieh Huang’s Erica 
   

©  2011 

 

Introduction by Peter Shotwell 

 

Shih-Chieh Huang (‘Aja’ to his colleagues in the computer go 

e-group) received his PhD degree in Computer Science at the 

National Taiwan Normal University. His go-playing program Erica 

won the Gold Medal in the 19x19 Go tournament at the 2010 

Computer Olympiad, beating such tough opponents as Ojima Yoji 

and Hideki Kato’s Zen, and Dave Fotland’s Many Faces of Go.  

Aja is a Taiwanese 6-dan Go player who is now a PostDoc 

Fellow at the University of Alberta in Canada working on computer 

go MCTS (Monte Carlo Tree Search) with Martin Mueller on Erica 

and Fuego, Hex (see the Wikipedia article for details— 

http://en.wikipedia.org/wiki/Hex_%28board_game%29)  

and MoHex with Ryan Hayward (see his impressive litst of 

publications at 

http://webdocs.cs.ualberta.ca/~hayward/publications.html). 

Erica’a innovations included major improvements in 

simulation balancing and time management and his PhD Thesis 

also provides an excellent background and updates events in 

computer go since the 2010 interviews which were recently 

published in a revised edition of my first book, Go! More Than a 

Game. They are now posted as Appendix I of this new Computer Go 

article.   

He has no plans at the moment to follow Many Faces of Go 

and Zen in commercializing Erica (which is the English name of his 

wife). 

  

 

http://en.wikipedia.org/wiki/Hex_%28board_game%29
http://webdocs.cs.ualberta.ca/~hayward/publications.html


 

2 
 

New Heuristics for Monte Carlo Tree Search Applied to the 

Game of Go 

 

 

A dissertation proposed 

by 

Shih-Chieh Huang 

 

to 

the Department of Computer Science 

and Information Engineering 

 

in partial fulfillment of the requirements 

 

for the degree of 

Doctor of Philosophy 

 

in the subject of 

 

Computer Science 

 

 

National Taiwan Normal University 

Taipei, Taiwan, R.O.C. 

2011 



 

I 
 

誌謝 

感謝我正式的指導教授林順喜老師。林老師在我念研究所時就開始栽培我，

還多次補助我參加電腦奧林匹亞，使我在比賽中累積了許多寶貴的經驗。 

這個研究是由 Rémi Coulom 教授所指導的，所以他應該得到我最真誠的感

謝。在 2009 年 6 月時，我陷入了博士班生涯的低潮，迷茫於沒有研究方向，於

是寫信問他一些關於他論文上的問題。他非常有耐心的回答並鼓勵我向前。從

那時候開始我們逐漸形成了一個極有生產力的合作。我們透過 email 與視訊會議

的方式討論，Rémi 勤勉的態度以及許多創新的想法，實在給我極大的幫助。 

    關於我們的圍棋程式 ERICA的發展，除了 Rémi 之外，還要特別感謝王一早

提供了許多有趣的想法，Łukasz Lew 在速度最佳化上的實質幫助，還有加藤英

樹慷慨的經驗傳授。 

    感謝中央研究院的研究員徐讚昇老師，在 2010 年的 UEC Cup 提供我們硬體

設備，幫助我們在這個艱難的比賽中贏得了第 3 名。 

    本研究的成果以及論文的寫作，乃是得益於以下諸多人士的幫助。關於

Simulation Balancing 的研究，感謝 David Silver 給我們的指正與鼓勵，也感謝林

中雄先生願意提供我們棋譜士網站中大量的棋譜。感謝 David Fotland 夫婦幫忙

逐章修正了許多英文的錯誤。感謝加拿大 Alberta 大學的 Martin Müller 教授與德

國 Friedrich-Schiller大學的 Ingo Althöfer 教授在論文內容上提出許多精闢的見解。

感謝我的論文口試委員林順喜教授、許舜欽教授、吳毅成教授、徐讚昇教授與

顏士淨教授，他們的批評與指導(尤其是吳毅成教授)幫助這本論文更加完善。 

    感謝我的家人，特別是我的媽媽以及太太，他們的支持推動我沒有後顧之

憂的完成博士學位。作為一個基督徒，我也要感謝神在暗中永不停止的引導與

幫助，正如聖經所說『信靠祂的，必不至於羞愧』。 

 

 



 

II 
 

Acknowledgement 

Thanks to my official adviser Professor Shun-Shii Lin, whose cultivation was from 

the start of my master‟s project. For many times, he funded my participation in the 

Computer Olympiads, which gave me a great deal of valuable experiences. 

This research was supervised by Professor Rémi Coulom, so he deserves the 

earnest gratitude from my heart of hearts. On June 2009, I was wandering in my Ph.D. 

career, without any research direction, and turned to ask him some questions about 

his paper. He answered very patiently and encouraged me to proceed. Since then we 

gradually formed an extremely productive cooperation. We discussed through emails 

and video conference. Rémi‟s diligence and innovative ideas have always been my 

enormous help.  

    Toward the development of our Go-playing program ERICA, besides Rémi, 

thanks to Yizao Wang for providing many interesting ideas, to Łukasz Lew for the 

speed optimization and to Hideki Kato for generous sharing of his experiences. 

Thanks to Professor Tsan-Sheng Hsu, Research Fellow of Academia Sinica in 

Taiwan, who kindly provided us the hardware resources for the 2010 UEC Cup so 

that we could win 3rd place in this tough competition. 

    The result of this research and the writing of this dissertation benefitted from the 

people listed in the following. About the research of Simulation Balancing, thanks to 

David Silver for his comments and encouragements. Thanks to Lin Chung-Hsiung for 

kindly providing access to the game database of web2go web site. Thanks to David 

and Wendy Fotland for correcting the linguistic errors chapter by chapter. Thanks to 

Professor Martin Müller from the Alberta University in Canada and Professor Ingo 

Althöfer from the Friedrich-Schiller University in German for proposing plenty of 

penetrating ideas about the content. Thanks to the committee of my dissertation 



 

III 
 

defense, including Professor Shun-Shii Lin, Professor Shun-Chin-Hsu, Professor 

I-Chen Wu, Professor Tsan-Sheng Hsu and Professor Shi-Jim Yen. Their criticism 

and instructions, particularly the ones from Professor Wu, helped to improve this 

dissertation. 

    Thanks to my family, especially my mother and my wife. Their support drove 

me to complete my Ph.D. career without any burden. As a Christian, thanks to God 

for his secret and unstoppable guidance and arrangements, just as what we read in the 

Bible “he that believes on him shall not be ashamed”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

IV 
 

摘要 

電腦圍棋的研究開始於 1970年，但圍棋程式卻從未曾被人們認為是強大的，

直到 2006 年，當「蒙地卡羅樹搜尋」(Monte Carlo Tree Search)與「樹狀結構信

賴上界法」(Upper Confidence bounds applied to Trees)出現之後，情況才開始完全

不同。「蒙地卡羅樹搜尋」與「樹狀結構信賴上界法」所帶進的革命強而有力到

一個地步，人們甚至開始相信，圍棋程式在 10 年或者 20 年之後，將能夠擊敗

頂尖的人類棋手。 

    在本研究中，我們針對「蒙地卡羅樹搜尋」提出一些新的啟發式演算法，

主要有兩方面的貢獻。第一個貢獻，是成功的將「模擬平衡化」(Simulation 

Balancing)應用到9路圍棋。「模擬平衡化」是一種用來訓練模擬的參數的演算法。

Silver 與 Tesauro 在 2009 年提出這個方法時，只實驗在比較小的盤面上，而我們

的實驗結果首先證明了「模擬平衡化」在 9 路圍棋的有效性，具體方法是證明

「模擬平衡化」超越了知名的監督式演算法 Minorization-Maximization (MM)大

約有 90 Elo 之多。第二個貢獻是針對 19 路圍棋，系統式的實驗了各種不同之時

間控制的方法。實驗結果清楚的指明，聰明的時間控制方案可以大大的提高棋

力。所有的實驗都是執行在我們的圍棋程式 ERICA，而 ERICA正是得益於這些啟

發式演算法與實驗結果，成功取得了 2010 年電腦奧林匹亞的 19 路圍棋金牌。 

 

 

 

 

 

關鍵字：人工智慧，圍棋，電腦圍棋，蒙地卡羅樹搜尋，樹狀結構信賴上界法，

模擬平衡化，時間控制，Erica。 



 

V 
 

Abstract 

Research into computer Go started around 1970, but the Go-playing programs were 

never, in a real sense, considered to be strong until the year 2006, when the brand 

new search scheme Monte Carlo Tree Search (MCTS) and Upper Confidence bounds 

applied to Trees (UCT) appeared on the scene. The revolution of MCTS and UCT 

promoted progress of computer Go to such a degree that people began to believe that 

after ten or twenty years, Go-playing programs will be able to defeat the top human 

players. 

    In this research, we propose some new heuristics of MCTS focused on two 

contributions. The first contribution is the successful application of Simulation 

Balancing (SB), an algorithm for training the parameters of the simulation, to 9×9 Go. 

SB was proposed by Silver and Tesauro in 2009, but it was only practiced on small 

board sizes. Our experiments are the first to demonstrate its effectiveness in 9×9 Go 

by showing that SB surpasses the well-known supervised learning algorithm 

Minorization-Maximization (MM) by about 90 Elo. The second contribution is 

systematic experiments of various time management schemes for 19×19 Go. The 

results indicate that clever time management algorithms can considerably improve 

playing strength. All the experiments were performed on our Go-playing program 

ERICA, which benefitted from these heuristics and the experimental results to win the 

gold medal in the 19×19 Go tournament at the 2010 Computer Olympiad. 

 

 

Keywords: Artificial Intelligence, Go, computer Go, Monte Carlo Tree Search 

(MCTS), Upper Confidence bounds applied to Trees (UCT), Simulation Balancing, 

Time Management, Erica. 



 

VI 
 

Contents      

                                                           

誌謝................................................................................................................................ I 

Acknowledgement ....................................................................................................... II 

摘要............................................................................................................................. IV 

Abstract ........................................................................................................................ V 

Contents ..................................................................................................................... VI 

List of Figures .............................................................................................................. X 

List of Tables ............................................................................................................ XII 

Chapter 1  Introduction ............................................................................................ 1 

1.1  Computer Games .......................................................................................................... 1 

1.2  The Game of Go ........................................................................................................... 2 

1.2.1  History ................................................................................................................... 2 

1.2.2  Rules ...................................................................................................................... 3 

1.3  Computer Go ................................................................................................................ 6 

1.4  Summary of the Contributions ..................................................................................... 8 

1.5  Organization of the Dissertation ................................................................................... 9 

Chapter 2  Background and Related Work ........................................................... 10 

2.1  Monte Carlo Go .......................................................................................................... 10 

2.2  Monte Carlo Tree Search (MCTS) ............................................................................. 11 

2.2.1  Selection .............................................................................................................. 12 

2.2.2  Expansion ............................................................................................................ 12 

2.2.3  Simulation............................................................................................................ 13 

2.2.4  Backpropagation .................................................................................................. 15 

2.3  Upper Confidence Bound Applied to Trees (UCT) .................................................... 18 

2.4  State-of-the-Art Go-Playing Programs ....................................................................... 21 



 

VII 
 

2.4.1  Crazy Stone ......................................................................................................... 21 

2.4.2  MOGO .................................................................................................................. 23 

2.4.3  GNU GO ............................................................................................................... 26 

2.4.4  FUEGO .................................................................................................................. 28 

2.4.5  The Many Faces of Go ........................................................................................ 29 

2.4.6  ZEN ...................................................................................................................... 30 

2.4.7  Other Programs .................................................................................................... 33 

Chapter 3  ERICA...................................................................................................... 34 

3.1  Development History.................................................................................................. 34 

3.1.1  First Version Created on May 2008 .................................................................... 34 

3.1.2  Second Version Created on June 2009 ................................................................ 36 

3.1.3  Third Version Created on February 2010 ............................................................ 38 

3.2  MCTS in ERICA .......................................................................................................... 40 

3.2.1  Selection .............................................................................................................. 40 

3.2.2  Expansion ............................................................................................................ 41 

3.2.2.1  Larger Patterns .................................................................................................. 41 

3.2.2.2  Other Features .................................................................................................. 42 

3.2.3  Simulation............................................................................................................ 42 

3.2.3.1  Boltzmann Softmax Playout Policy .................................................................. 42 

3.2.3.2  Move Generator ................................................................................................ 44 

3.2.3.3  ForbiddenMove ................................................................................................ 45 

3.2.3.4  ReplaceMove .................................................................................................... 46 

3.2.4  Backpropagation .................................................................................................. 46 

3.2.4.1  Bias RAVE Updates by Move Distance ........................................................... 46 

3.2.4.2  Fix RAVE Updates for Ko Threats .................................................................. 47 

3.3  KGS Games of ERICA ................................................................................................ 49 

Chapter 4  Monte Carlo Simulation Balancing Applied to 9×9 Go .................... 52 



 

VIII 
 

4.1  Introduction ................................................................................................................ 52 

4.2  Description of Algorithms .......................................................................................... 54 

4.2.1  Softmax Policy .................................................................................................... 54 

4.2.2  Supervised Learning with MM ............................................................................ 54 

4.2.3  Policy-Gradient Simulation Balancing (SB) ....................................................... 55 

4.3  Experiments ................................................................................................................ 56 

4.3.1  ERICA ................................................................................................................... 56 

4.3.2  Playout Features .................................................................................................. 56 

4.3.3  Experimental Setting ........................................................................................... 58 

4.3.4  Results and Influence of Meta-Parameters .......................................................... 59 

4.4  Comparison between MM and SB Feature Weights .................................................. 61 

4.5  Against GNU Go on the 9×9 Board ........................................................................... 63 

4.6  Playing Strength on the 19×19 Board ........................................................................ 65 

4.7.  Conclusions ............................................................................................................... 65 

Chapter 5  Time Management for Monte Carlo Tree Search Applied to the 

Game of Go ................................................................................................................. 67 

5.1  Introduction ................................................................................................................ 67 

5.2  Monte Carlo Tree Search in ERICA and Experiment Setting ...................................... 68 

5.3  Basic Formula ............................................................................................................. 69 

5.4  Enhanced Formula Depending on Move Number ...................................................... 70 

5.5  Some Heuristics .......................................................................................................... 72 

5.5.1  UCT Formula in ERICA ....................................................................................... 72 

5.5.2  Unstable-Evaluation Heuristic ............................................................................. 72 

5.5.3  Think Longer When Behind ................................................................................ 73 

5.6  Using Opponent‟s Time ............................................................................................. 74 

5.6.1  Standard Pondering ............................................................................................. 75 

5.6.2  Focused Pondering .............................................................................................. 75 



 

IX 
 

5.6.3  Reducing ThinkingTime According to the Simulation Percentage ..................... 77 

5.7  Conclusions ................................................................................................................ 78 

Chapter 6  Conclusions and Proposals for Future Work ..................................... 79 

6.1 Simulation Balancing (SB) .................................................................................... 79 

6.2 Time Management ................................................................................................. 80 

6.3 Other Prospects ...................................................................................................... 80 

References ................................................................................................................... 82 

Appendix A. Publication List .................................................................................... 91 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

X 
 

List of Figures 

 

Figure 1.1: A Go board of 19×19 grid of lines, with some played stones. ............................... 4 

Figure 1.2: An example of “Removing a string without liberty” ............................................. 4 

Figure 1.3: An example of “Prohibiting suicide” ..................................................................... 5 

Figure 1.4: An example of “Prohibiting repeating positions” .................................................. 5 

Figure 1.5: An example of “Winning by more territory” ......................................................... 6 

Figure 2.1: The scheme of MCTS .......................................................................................... 12 

Figure 2.2: The first stage of MCTS: selection ...................................................................... 12 

Figure 2.3: The second stage of MCTS: expansion ................................................................ 13 

Figure 2.4: The third stage of MCTS: simulation................................................................... 14 

Figure 2.5: The fourth stage of MCTS: backpropagation....................................................... 16 

Figure 2.6: The exhibition game at the 2010 Computer Olympiad ........................................ 17 

Figure 2.7: The final position of the exhibition match: Kaori Aoba 4p (White) vs. CRAZY 

STONE (Black), with 7 handicap stones ................................................................. 22 

Figure 2.8: An example of sequence-like simulation proposed by MOGO team .................... 24 

Figure 2.9: An example of “save a string by capturing” and “save a string by extending” .... 26 

Figure 2.10: The final position of the match: Chun-Hsun Chou 9p (White) vs. MOGOTW 

(Black). .................................................................................................................. 26 

Figure 2.11: Round 1 at the 2003 Computer Olympiad: JIMMY (White) vs. GNU GO (Black)27 

Figure 2.12: A position of the final match in 4th UEC Cup: ZEN (White) vs. FUEGO (Black)28 

Figure 2.13: The final position of the match in round 7 in the 19×19 Go tournament at the 

2010 Computer Olympiad: ZEN (White) vs. THE MANY FACES OF GO (Black) .... 30 

Figure 2.14: KGS Rank Graph for Zen19D ............................................................................ 31 

Figure 2.15: The final position of the exhibition match in the 4th UEC Cup: Kaori Aoba 4p 



 

XI 
 

(White) vs. ZEN (Black) ......................................................................................... 32 

Figure 2.16: The final position of the match in the Computer Go Competition at the 2011 

IEEE International Conference on Fuzzy Systems: Chun-Hsun Chou 9p (White) vs. 

ZEN (Black), with 6 handicap stones ..................................................................... 33 

Figure 3.1: The final position of the match in round 2 in the 9×9 Go tournament at the 2008 

Computer Olympiad: ERICA (White) vs. AYA (Black) .......................................... 36 

Figure 3.2: The final position of the match in round 2 of the 3rd UEC Cup: ERICA (White) vs. 

AYA (Black) ......................................................................................................... 37 

Figure 3.3: A position of the final match in the playoff of the 19×19 Go tournament at the 

2010 Computer Olympiad: ZEN (White) vs. ERICA (Black) ............................... 39 

Figure 3.4: A position of the match in the 4th UEC Cup: THE MANY FACES OF GO (White) vs. 

ERICA (Black)...................................................................................................... 40 

Figure 3.5: An example of a position in the playout ................................................................. 43 

Figure 3.6: An example of ForbiddenMove .............................................................................. 46 

Figure 3.7: An example of ForbiddenMove .............................................................................. 46 

Figure 3.8: An example of “Bias RAVE Updates by Move Distance” ...................................... 47 

Figure 3.9: An example to show the need of “Fix RAVE Updates for Ko Threats”: ajahuang 

[6d] (White) vs. Zen19D [5d] (Black)................................................................. 48 

Figure 3.10: An example of “Fix RAVE Updates for Ko Threats” ........................................... 49 

Figure 3.12: The KGS Rank Graph for EricaBot ...................................................................... 50 

Figure 3.13: A 19×19 ranked game on KGS: EricaBot 3-dan (White) vs. BOThater36 2-dan 

(Black) ................................................................................................................. 51 

Figure 3.14: A 9×9 game on KGS: Erica9 (White) vs. guxxan 5-dan (Black) .......................... 51 

Figure 4.1: Examples of Features 2,3,4,5,6 and 7 ................................................................... 58 

Figure 4.2: Mean square error as a function of iteration number ............................................ 61 

Figure 5.1: Thinking time per move, for different kinds of time-allocation strategies ........... 71 



 

XII 
 

List of Tables 

Table 1.1: Complexities of some well-known games ............................................................... 7 

Table 3.1: The result of the Computational Intelligence Forum & World 9×9 Computer Go 

Championship held on September 25-27, 2008, in Tainan, Taiwan ........................ 35 

Table 3.2: The result of the 9×9 Go tournament at the 2009 TAAI Go Tournament ............... 37 

Table 3.3: The result of the 19×19 Go tournament at the 2009 TAAI Go Tournament ........... 37 

Table 3.4: The result of the 4th UEC Cup, 2010 ..................................................................... 40 

Table 3.5: Pseudocode of the move generator in the playout of ERICA .................................. 44 

Table 4.1: Reference results against Fuego 0.4, 1,000 games, 9×9, 3k playouts/move .......... 58 

Table 4.2: Experimental results ............................................................................................... 60 

Table 4.3: Comparison of local features, between MM and SB .............................................. 62 

Table 4.4: 3×3 patterns ............................................................................................................ 64 

Table 4.5: Results against Gnu Go 3.8 Level 10, 1,000 game, 9×9, 300 playouts/move ........ 64 

Table 4.6: Results against Gnu Go 3.8 Level 0, 500 game, 19×19, 1,000 playouts/move ...... 65 

Table 5.1: Fixed playouts per move against GNU GO 3.8, Level 2, 500 games, 19×19 .......... 69 

Table 5.2: Basic formula against GNU GO 3.8, Level 2, 500 games, 19×19 ........................... 70 

Table 5.3: Enhanced formula (C=80) against GNU GO 3.8, Level 2, 500 games, 19×19 ........ 71 

Table 5.4: Enhanced formula (C=80) with Unstable-Evaluation heuristic against GNU GO 3.8, 

Level 2, 500 games, 19×19 ...................................................................................... 73 

Table 5.5: Enhanced formula (C=80, MaxPly=160) with Unstable-Evaluation heuristic and 

Think Longer When Behind (T=0.4) against GNU GO 3.8, Level 2, 500 games, 

19×19 ....................................................................................................................... 74 

Table 5.6: Standard Pondering against GNU GO 3.8, Level 2, 500 games, 19×19 .................. 75 

Table 5.7: Focused Pondering (N=10) against GNU GO 3.8, Level 2, 500 games, 19×19 ...... 76 

Table 5.8: Focused Pondering (N=5) against GNU GO 3.8, Level 2, 500 games, 19×19 ........ 76 



 

XIII 
 

Table 5.9: Self-play: Focused Pondering against Standard Pondering, both with Enhanced 

Formula (C=180, MaxPly=160), 500 games, 19×19 ............................................... 77 

 



 

1 
 

Chapter 1  

Introduction 

The game of Go is a grand challenge of artificial intelligence. In this dissertation, we 

investigate some new heuristics of Monte Carlo Tree Search (MCTS) applied to the 

game of Go.  

1.1  Computer Games 

Artificial intelligence in games (Herik et al., 2002) has made tremendous progress in 

the past decades. The theoretical foundation of computer games was laid in 1950, 

when Claude Shannon published his groundbreaking paper “Programming a 

Computer for Playing Chess” (Shannon, 1950). It was this paper that proposed the 

well-known search scheme minimax procedure, in collaboration with an evaluation 

function for evaluating the terminal positions. Minimax procedure as well as its 

enhancements (Schaeffer, 1989) such as alpha-beta pruning (Knuth and Moore, 1975), 

transposition table (Slate and Atkin, 1977), etc, constitute the framework that is still 

dominant in the area of computer games, particularly computer chess. The rapid and 

constant development of computer games, from 1950, reached a peak in the year 1997, 

when the chess-playing super-computer DEEP BLUE (Campbell et al., 2002) built by 

IBM defeated the world champion Garry Kasparov in a six-game match. This 

achievement has been regarded as a significant milestone of artificial intelligence. In 



 

2 
 

spite of the chess-playing programs which have grown to the super-human level, the 

game of Go is a major challenge that remains open (Burmeister and Wiles, 1995; 

Bouzy and Cazenave, 2001). 

1.2  The Game of Go 

1.2.1  History 

Go (Chinese:圍棋, Japanese:囲碁, Korean: 바둑) is an ancient board game that 

originated in China in the far past. According to the generally accepted legends, Go 

was invented by the Chinese emperor Yao (2337-2258 B.C.) in order to instruct his 

son Danzhu. In the long history of China, interest and research toward Go were never 

scarce. The game of Go was developed to an art, deeply mingled with Chinese culture 

as one of the “Four Arts of the Chinese Scholar”, namely Qín (Guqin), Qí (Go), Shū 

(Chinese calligraphy), Huà (Chinese painting). Moreover, the terminology of Go was 

largely adopted from Chinese idioms to represent specific conceptions. Two evident 

examples are Ladder (Chinese: 征子, suggesting “a long chase”) and Ko (Chinese:

劫, implying “infinite misfortune”). Several classical writings investigating the 

playing skills of Go are still circulated nowadays. For instance,  “Mystery of MySter 

-ies ” (Chinese: 玄玄棋經), a well-known Tsumego compilation documented in 1349 

A.D., is still popular and studied by Go players. 

Go was extensively studied and widely played by the general public after 

spreading to Japan in the 7th century. On account of the diligent research and 

continual practice of numerous Japanese top Go players, such as the celebrated 

Honinbo Shusaku (1829-1862 A.D.), the playing level was raised immensely. Go 

became “the national game of Japan” (Smith, 1908). It was in Japan that the first 

professional Go institution was built and a number of formal tournaments were held 



 

3 
 

annually. Such development in Japan not only popularized Go in Japan itself, but also 

to other countries and even the western world. 

Now, the four leading countries where Go prevails are Korea, China, Japan and 

Taiwan. However, people that play Go are increasing in other lands such as America 

and Europe. 

1.2.2  Rules 

The description in this section is partly extracted from (Jasiek, 1997) and Sensei‟s 

Library
1
. Briefly speaking, Go is played by two players, Black (makes the first move) 

and White, by placing one stone of one‟s own color in turn on an empty intersection 

on the board, called goban, of 19×19 grids of lines (Figure 1.1). A move consists of 

placing one stone of one's own color on an empty intersection on the board. A player 

may pass his turn at any time and two consecutive passes end the game.  

Beginners usually play on a 9×9 board for the purpose of training. Another board 

size of public interest is 13×13. 13×13 Go is more interesting than 9×9 Go to most Go 

players, because the concept of corner and edge is meaningful in 13×13 Go but not in 

9×9 Go (Huang and Yen, 2010).  

                                                      
1
 Sensei‟s Library, http://senseis.xmp.net/. 



 

4 
 

 

Figure 1.1: A Go board of 19×19 grid of lines, with some played stones. 

 

The complete rules of Go can be summarized to the following four principles. 

1. Removing a string without liberty. 

A liberty is an empty intersection directly adjacent to a stone. A string (or chain) is a 

single or upwards of two directly adjacent stones of the same color. Any string 

without a liberty is captured by the opponent. Figure 1.2 gives an example of this 

principle. 

 

Figure 1.2: An example of “Removing a string without liberty”. Left: The string of three 

stones has 8 liberties (marked by ▲). Middle: The string has only 1 liberty. Right: White 

captures the string, without a liberty, by playing at point A.  



 

5 
 

2. Prohibiting suicide. 

A move is illegal if this move has no capture and the string will have no liberty after it 

is played. Figure 1.3 gives an example of this principle. 

  

Figure 1.3: An example of “Prohibiting suicide”. Point A and B are both Black‟s illegal 

moves. Point C is Black‟s legal move because it can capture White‟s string marked by ○. 

 

3. Prohibiting repeating positions. 

This principle deals with the repetition of a board position in the game of Go. The 

simplest case is Ko. The more general case, of a longer cycle (the number of moves) 

between the repeats, is called Superko, which is further defined as Situational Superko 

and Positional Superko. Figure 1.4 gives an example of this principle.  

 

Figure 1.4: An example of “Prohibiting repeating positions”. Left: The original position. 

Middle: Black captures a White‟s stone. Right: This White‟s move is illegal, because it 

recreates a formal position (the one in the left).  

 

4. Winning by more territory. 

A player's territory consists of all the board points he has either occupied or 



 

6 
 

surrounded by his own color. There are mainly two types of scoring: Territory Scoring 

and Area Scoring. In Territory Scoring, used in Japanese and Korean rules, each 

player's score is the sum of her territory plus prisoners (all of the opponent‟s captured 

stones during the game). In Area Scoring, used in Chinese rules, each player's score is 

the sum of her territory plus the number of her stones on the board. In order to 

compensate for Black‟s advantage of the first move, White is given a certain points, 

called komi, in scoring. Figure 1.5 gives an example of this principle. Suppose 

komi=7.5. By Territory Scoring, since (B,W)=(25,25+7.5)=(25,32.5), White wins by 

7.5 points. By Area Scoring, since (B,W)=(41,40+7.5)=(41,47.5), White wins by 6.5 

points. 

 

Figure 1.5: An example of “Winning by more territory”. 

1.3  Computer Go 

The rules of Go are rather simple, but its variations are almost numberless. The 

state-space complexity of Go is about 10
171

 (Tromp and Farnebäck, 2006) and the 

game-tree complexity of Go is about 10
360

 (Allis, 1994), as shown in Table 1.1. Also, 

Go was proved to be PSPACE-hard (Lichtenstein and Sipser, 1978). Such high 

complexity makes Go a grand challenge for artificial intelligence.  

 

 



 

7 
 

Game State-space 

complexity 

Game-tree 

complexity 

Status 

Tic-tac-toe 10
3
 10

5
 Solved manually 

Checkers 10
20

 10
31

 Solved in 2007 

Chess 10
47

 10
123

 Programs > best humans 

Chinese chess 10
48

 10
150

 Programs ≈ best humans 

Shogi 10
71

 10
226

 Programs < best humans 

Go 10
71

 10
360

 Programs << best humans 

Table 1.1: Complexities of some well-known games 

 

Research into computer Go started around 1970 (Zobrist, 1970). Although the 

whole search scheme of minimax procedure in most of the computer games has been 

a success story, it does not work well for the game of Go. The main problems are the 

difficulty of designing a feasible evaluation function and the huge search space that is 

considerably larger than other games (Bouzy and Cazenave, 2001; Müller, 2002). 

Consequently, before the year 2006, the traditional approach to writing a Go-playing 

program was to build many handcrafted and independent modules, each realizing a 

concept of certain Go knowledge, such as group (Chen, 1989) and life-and-death 

(Chen and Chen, 1999), then integrate them into a single knowledge-based expert 

system. Developing a competitive Go-playing program in those days, as a result, took 

a great deal of time and required a great deal of Go knowledge. But thanks to large 

money prize offered by tournaments such as the Ing Cup and FOST Cup (Fotland, 

1996), computer Go became popular since the 1980s. World championship 

competitions drove steady increasing in playing strength among the top programs, 

including THE MANY FACES OF GO by David Fotland, GO INTELLECT by Ken Chen, 

GO++ by Michael Reiss, GOLIATH by Mark Boon, JIMMY by Shi-Jim Yen (Yen, 1999), 

etc. Among these traditional Go programmers, the most well-known is Chen Zhixing, 

renowned for developing HANDTALK (afterwards known as GOEMATE), the generally 



 

8 
 

accepted strongest Go-playing program in the 1990s. In 1997, HANDTALK won a 

match of 11 handicap stones against a 9-year-old, amateur 6-dan Go player. 11 

handicap stones away from amateur 6-dan is approximately amateur 5-kyu level, 

which is far weaker than the top human level. So, that‟s why Go-playing programs 

were never, in a real sense, considered to be strong until the very year 2006, when the 

brand new search scheme Monte Carlo Tree Search (MCTS) (Coulom, 2006) and 

Upper Confidence bounds applied to Trees (UCT) (Kocsis and Szepesv ári, 2006) 

appeared on the scene. The revolution of MCTS and UCT promoted progress of 

computer Go to such a degree that people began to believe that after ten
2
 or twenty

3
 

years, Go-playing programs will be able to defeat the top human players.  

1.4  Summary of the Contributions 

In this dissertation, we study and investigate several new heuristics of Monte Carlo 

Tree Search (MCTS) which had been tested in our Go-playing program ERICA.   

Excluding from the technical and engineering details, our work can be summarized to 

two contributions.  

The first contribution is Monte Carlo Simulation Balancing (SB) applied to 9×9 

Go. SB is an algorithm to train the parameters of the simulation. It was proposed in 

2009, but only practiced on small board sizes. Our experiments are the first to 

demonstrate its effectiveness in 9×9 Go by showing that SB surpasses the well-known 

supervised learning algorithm Minorization-Maximization (MM) by about 90 Elo.  

The second contribution is systematic experiments of various time management 

                                                      
2
 The 10 years prediction is maintained by Professor Jaap van den Herik in Tilburg Centre for 

Creative Computing (TiCC) of the Tilburg University, Netherlands. 

 
3
 One of the proponents of the 20 years prediction is David Fotland, the author of THE MANY FACES OF 

GO. 



 

9 
 

schemes for 19×19 Go. The results indicate that clever time management algorithms 

can considerably improve playing strength.  

All the experiments were performed on our Go-playing program ERICA, the 

winner in the 19×19 Go tournament at the 2010 Computer Olympiad (Fotland, 2010), 

which is a strong confirmation of the effectiveness of these new heuristics. 

1.5  Organization of the Dissertation 

The organization of this dissertation is as follows. Chapter 1 gives an introduction of 

computer games, the game of Go, computer Go, a summary of the contributions in 

this research and the organization of the dissertation. Chapter 2 presents the 

background and related work of this research. It introduces Monte Carlo Go, explains 

Monte Carlo Tree Search (MCTS) and Upper Confidence bounds applied to Trees 

(UCT), and surveys some of the start-of-the-art Go-playing programs as well as their 

contributions. Chapter 3 introduces our Go-playing ERICA. We narrate its 

development history and standings in the tournaments that we have participated, and 

introduce the framework of the program. Chapter 4 presents our first contribution: 

applying SB to 9×9 Go. Chapter 5 shows the second contribution: time management 

schemes utilized in 19×19 Go. Finally, conclusions and proposals for future work are 

given in Chapter 6. 

 

 

 

 

 



 

10 
 

Chapter 2  

Background and Related Work 

In this Chapter, we introduce the background and related work of this research. 

Section 2.1 introduces the progress of Monte Carlo Go until the development of 

Monte Carlo Tree Search (MCTS) and Upper Confidence bounds applied to Trees 

(UCT). Section 2.2 explains MCTS and its four stages along with the related work. 

Section 2.3 explains UCT, which was mainly proposed for the first stage (selection) of 

MCTS. Finally, Section 2.4 surveys a number of state-of-the-art Go-playing programs 

as well as their contributions. 

2.1  Monte Carlo Go 

The idea of Monte Carlo Go was at the very beginning introduced by Brügmann 

(Brügmann, 1993). In his paper “Monte Carlo Go”, Brügmann proposed an algorithm 

which attempts to find the best move by simulated annealing, without including any 

Go knowledge, except the rule “do-not-fill-eye” in the simulation. Based on 

Abramson‟s expected-outcome model (Abramson, 1990), a position is evaluated by 

the average score of a certain number of simulations (random games) played from that 

position on. Remarkably, by this approach, Brügmann‟s program GOBBLE achieved a 

playing strength of about 25-kyu on a 9×9 board. In 2003, on the basis of Brügmann‟s 

work, Bouzy started to make some experiments on Monte Carlo Go (Bouzy, 2003; 



 

11 
 

Bouzy and Helmstetter, 2003) and accordingly built a new version of his program 

INDIGO. In the next few years, Bouzy and Chaslot proceeded to bring forward not a 

few groundbreaking ideas, such as Bayesian generation of patterns for 19×19 Go 

(Bouzy and Chaslot, 2005), Progressive Pruning and its variants Miai Pruning (MP) 

and Set Pruning (SP) (Bouzy, 2005a), History Heuristic and Territory Heuristic 

(Bouzy, 2005b) and Enhanced 3×3 patterns by reinforcement learning (Bouzy and 

Chaslot, 2006). 

It was based on these preliminary works on Monte Carlo Go that the significant 

breakthrough of Monte Carlo Tree Search (MCTS) (Coulom, 2006) and Upper 

Confidence bounds applied to Trees (UCT) (Kocsis and Szepesv ári, 2006) 

independently came to realize in 2006.  

2.2  Monte Carlo Tree Search (MCTS) 

Monte Carlo Tree Search (MCTS) (Coulom, 2006) is a kind of best-first search that 

tries to find the best move and to keep the balance between exploration and 

exploitation of all moves. MCTS was firstly implemented in CRAZY STONE, the 

winner in the 9×9 Go tournament at the 2006 Computer Olympiad. Together with the 

emergence of UCT (Kocsis and Szepesv ári, 2006), the huge success of MCTS 

stimulated profound interest among Go programmers. So far, many enhancements of 

MCTS have been proposed and developed, such as Rapid Action Value Estimation 

(RAVE), proposed by (Gelly and Silver, 2007; Gelly and Silver, 2011), and 

progressive bias, proposed by (Chaslot et al., 2007), to strengthen its effect. Plenty of 

comprehensive studies were also focused on the policy and better quality of the 

playout (Coulom, 2007; Chaslot et al., 2009; Hendrik, 2010). 

MCTS is commonly classified into four stages (Chaslot et al., 2007): selection, 



 

12 
 

expansion, simulation and backpropagation, as shown in Figure 2.1. The operation of 

MCTS consists in performing these four stages ever and again as long as there is time 

left. The repeated four stages of MCTS and the related work are described in the 

following subsections. 

 
Figure 2.1: The scheme of MCTS. 

2.2.1  Selection 

The first stage selection is intent on selecting one of the children, according to a 

selection function (or selection formula), of a given node and repeats from the root 

node until the end of the tree. Figure 2.2 gives an example. The selection strategy 

UCT and the various selection functions adopted by different Go-playing programs 

will be independently investigated in Section 2.3. 

 

Figure 2.2: The first stage of MCTS: selection. Node 1 (Root) selects Node 2 then Node 2 

selects Node 6, which reaches the end of the tree. 

2.2.2  Expansion 

The second stage expansion is to create a new child node, corresponding to one of the 

legal moves of the parent node, and store this new node to the memory to “expand” 

Selection Expansion Simulation Backpropagation 

 

   

     

 

1 

2 3 4 

5 6 7 8 9 



 

13 
 

the tree. Figure 2.3 gives an example.  

The simplest scheme of expansion is to create a new node in the first visit of a 

leaf node (Coulom, 2006). However, for RAVE, it is necessary to create all the child 

nodes in preparation for updating the RAVE statistics in the fourth stage 

backpropagation. To reduce this memory overhead, a popular solution is delayed node 

creation, namely to expand a node in the nth (n>1) visit. The NOMITAN team has 

reported some effective variants of delayed node creation (Yajima et al., 2010).  

To raise the performance of RAVE, it is suggested to assign a prior value to each 

created node (Gelly and Silver, 2007). If many features are taken into account for the 

computation of a prior value, node creation can be costly and slow. To speed up node 

creation in multithreaded environment, FUEGO uses an independent, thread-specific, 

memory array for node creation (Enzenberger and Müller, 2009).  

 

Figure 2.3: The second stage of MCTS: expansion. Node 10, the child node of the leaf node 6, 

is created and stored to the memory to expand the tree. 

2.2.3  Simulation 

The third stage simulation is to perform a simulation (also called playout) from the 

 

   

     

 

 

1 

2 3 4 

5 6 7 8 9 

10 



 

14 
 

position represented by the new created node. For delayed node creation, a simulation 

is simply performed from the leaf node. In MCTS, a simulation is carried out by 

Monte Carlo simulation composed of random or pseudo-random moves. This is the 

reason for the name “Monte Carlo Go” and “Monte Carlo Tree Search”. When the 

random game is completed, the final position is scored
4
 to decide the winner. Then 

the associated outcome 0/1 is passed to the tree to indicate loss/win of this simulation. 

Figure 2.4 gives an example.  

 

 

 

Figure 2.4: The third stage of MCTS: simulation. After Node 10 was created, a Monte Carlo 

simulation is performed from the position represented by this node. Finally, the outcome 0/1 

is returned to indicate loss/win of this simulation. 

 

Simulation is the most crucial step of MCTS. In general, there are mainly two 

                                                      
4
 For the game of Go, a simulation is usually scored by the Chinese rules. 

 

   

     

 

Simulation outcome=0/1  

1 

2 3 4 

5 6 7 8 9 

10 



 

15 
 

types of Monte Carlo simulation among the current strong Go-playing programs.  

The first type, called Mogo-type, sequence-like or fixed-sequence simulation 

(Gelly et al., 2006), also being called Mogo’s magic formula, is used by MOGO, PACHI, 

FUEGO, and many strong Go-playing programs. Mogo-type, sequence-like simulation 

will be further investigated in section 2.4.2.  

The second type, called CRAZY STONE-like, probabilistic simulation, being called 

CRAZY STONE’s update formula (Teytaud, 2011) that allows more flexibility, was 

proposed by Rémi Coulom (Coulom, 2007) and is being used by CRAZY STONE, AYA 

and our Go-playing program ERICA. ZEN was reported to use a mixed type of 

simulation between Mogo-type and CRAZY STONE-like (Yamato, 2011). CRAZY 

STONE-like simulation will be further investigated in the next chapter. 

    Recent research on simulation centers on two directions. The first direction is to 

balance the simulations in the framework of Boltzmann softmax playout policy with 

the trained feature weights which will be discussed in Chapter 4. The second direction 

is to improve the playout policy by letting the simulations learn from itself, according 

to the results of the previous simulations (Drake, 2009; Hendrik, 2010; Baier and 

Drake, 2010) or the statistical data accumulated in the tree (Rimmel et al., 2010). 

Such dynamic or adaptive scheme for the simulation is being called adaptive playout.  

 2.2.4  Backpropagation 

The fourth stage backpropagation is to propagate the simulation outcome 0/1 from the 

new created node, along with the path decided in the selection stage, to the root node. 

Each node in this path updates its own statistical data by the simulation outcome. 

Figure 2.5 gives an example. 

    In backpropagation, it is possible to update other statistical data by the 

information collected from the simulation, to obtain a faster estimation of the child 



 

16 
 

nodes. For instance, with RAVE (Gelly and Silver, 2007) or other kinds of AMAF 

(All-Moves-As-First) (Brügmann, 1993; Helmbold and Wood, 2009) a node updates 

all the moves that were played in the tree and the simulation after the position 

represented by this node. 

Some researchers also tried to assign heavier weights to the later simulation 

outcomes when the tree grows larger (Xie and Liu, 2009), under the assumption that 

the larger the sub-tree the more promising the simulation outcome. 

. 

Figure 2.5: The fourth stage of MCTS: backpropagation. The simulation outcome 0/1 is 

propagated from Node 10 along with the path in the selection stage (Node 6 and Node 2) to 

the root node (Node 1). Each node updates its own statistical data by the simulation outcome. 

 

A recent topic in backpropagation which calls for much attention is dynamic 

komi. Dynamic komi was proposed to cure the awful performance of MCTS in 

handicap games on the 19×19 board. The objective under current structure of MCTS 

is to maximize the winning rate rather than score. So, MCTS works best if the 

winning rate of the root node is close to 50%, because it is the very occasion that the 

 

   

     

 

 

 

 

 1 

2 3 4 

5 6 7 8 9 

10 

 

 Simulation outcome=0/1 

  



 

17 
 

simulation outcomes can reflect good and bad moves to the maximum degree. In the 

case that the winning rate is close to 100% (the case of 0% can be deduced in the 

same way), MCTS becomes reluctant to explore (since a 0.5 point win or a 20.5 

points win are of the same outcome) and incapable to discriminate between good and 

bad moves. After all, Monte Carlo simulation is more or less biased and far from 

perfection. This problem becomes particularly apparent in the handicap games against 

strong human players, as a result of the huge and early advantage offered by the 

handicap stones.  

Figure 2.6 gives a practical example. This position is selected from the exhibition 

game at the 2010 Computer Olympiad, Rina Fujisawa (White) vs. ERICA (Black), with 

6 handicap stones. The stone marked by ∆ is the last move. Point A (extending) is a 

mandatory move for Black in this case but ERICA played at B, a clearly bad move, and 

showed over 80% winning rate. 

 

Figure 2.6: The exhibition game at the 2010 Computer Olympiad: Rina Fujisawa (White) vs. 

ERICA (Black), with 6 handicap stones. White won by resignation. 

 



 

18 
 

The main idea of dynamic komi is to adjust the komi value, by the averaged 

score derived from the last search, in order to shift the winning rate of the root node 

closer to 50%. ZEN, THE MANY FACES OF GO and PACHI
5
 have been reported to 

benefit from dynamic komi, although each has a different approach. 

2.3  Upper Confidence Bound Applied to Trees 

(UCT) 

Upper Confidence bound applied to Trees (UCT) (Kocsis and Szepesv ári, 2006) is 

the extension of the UCB1 strategy (Auer et at., 2002) to minimax tree search. The 

deterministic UCB1 algorithm or policy was designed to solve the Multi-Armed 

Bandit problem (Auer et al., 1995) and ensures that the optimal machine is played 

exponentially more than any other machine uniformly when the rewards are in [0,1]. 

In MCTS, UCT is mainly served as a selection function in the first stage of MCTS 

and, in general, can be viewed as a special case of MCTS. Under the formulation of 

UCT, the selection in each node is similar to the Multi-Armed Bandit problem 

(Coquelin and Munos, 2007). It aims to find the best move and in the meantime keep 

the balance between the exploration and exploitation of all moves. MOGO was the first 

Go-playing program that successfully applied UCT (Gelly et al., 2006). 

The strategy of UCT is to choose a child node which maximizes the selection 

formula (2.1): 

uct

uct

uctuct
n

N log
C   vUCT                                 (2.1) 

where vuct is the value of this node, nuct is the visit count of this node and Nuct is the 

visit count of the parent node. Cuct is a constant, which has to be tuned empirically. 

                                                      
5
 The author of PACHI, Petr Baudiš, described his successful implementation of dynamic komi in the 

draft of his paper “Balancing MCTS by Dynamically Adjusting Komi Value”. 



 

19 
 

The latter part of the formula (2.1) is usually called “exploration term” for the purpose 

of balancing the exploration and exploitation.  

The strategy of UCT was very quickly found not feasible to the game of Go, 

because it requires that each child node must be visited at least once. Even on a 9×9 

board, the branching factor, 81 for the node representing the empty position, is still 

too large to do such complete search. To remedy this flaw, Rapid Action Value 

Estimation (RAVE) was proposed (Gelly and Silver, 2007; Gelly and Silver, 2011). 

RAVE is a kind of the heuristic AMAF (All-Moves-As-First) (Brügmann, 1993; 

Helmbold and Wood, 2009) that updates all the moves which were played in the tree 

and the simulation after the position represented by this node. The strategy RAVE is 

to choose a child node which maximizes the selection formula (2.2): 

rave

rave

raverave
n

N log
C   vRAVE                                 (2.2) 

where vrave is the RAVE value of this node, nrave is the RAVE visit count of this node 

and Nrave is the RAVE visit count of the parent node. Crave is a constant, which has to 

be tuned empirically.  

Blending UCT with RAVE, the strategy UCT-RAVE is to choose a node which 

maximizes the selection formula (2.3): 

UCTt)Coefficien-(1RAVEt Coefficien RAVE-UCT           (2.3) 

where Coefficient is the weight of RAVE (Gelly and Silver, 2007; Silver, 2009). 

    In the past few years, many efforts have been paid to improve the selection 

function based on the strategy UCT-RAVE. Some new ideas and the various selection 

functions adopted by different Go-playing programs are listed as follows. 

1. Chaslot et al. proposed two progressive strategies for the selection stage and 



 

20 
 

measured a significant improvement from 25% to 58% (200 games) on their 

program MANGO against GNU GO 3.7.10 on 13×13 board (Chaslot et al., 2007). 

The first strategy is progressive unpruning, also called progressive widening 

(Coulom, 2007), which gradually unprunes the child nodes according to their 

scores computed by the selection function. The other substantial strategy is 

progressive bias, realized as an independent term added behind the selection 

formula aiming to direct the search according to time-expensive heuristic 

knowledge. 

2. Chaslot et al. presented a selection formula combing online learning (bandit 

module), transient learning (RAVE values), expert knowledge and offline 

patter-information (Chaslot et al., 2009), which is being used in their program 

MOGO. 

3. Silver, in his Ph.D. dissertation, based on the experiments on MOGO (Silver, 2009), 

suggested to take off the exploration terms of both UCT and RAVE, namely set 

Cuct and Crave to 0. 

4. Rosin proposed a new algorithm PUCB under the assumption that contextual side 

information is available at the start of the episode (Rosin, 2010). 

5. Tesauro et al. proposed a Bayesian framework for MCTS that allows potentially 

much more accurate (Bayes-optimal) estimation of node values and node 

uncertainties from a limited number of simulation trials (Tesauro et al., 2010). 

6. THE MANY FACES OF GO is using the formula (2.4) in collaboration with 

progressive widening (Fotland, 2011): 

biasmfgobetavbeta uct _v)
n

N log
C()1( rave

uct

uct
uct               (2.4) 

uctN3500

500


beta  



 

21 
 

   where mfgo_bias is unchanging, per move, within a range of about ±2%, based on 

the quality of the move estimated by the move generator of THE MANY FACES OF 

GO. 

7. AYA is using the formula (2.5) in collaboration with progressive widening 

(Yamashita, 2011): 

)
n

N log
Cv()

n

N log
C()1(

rave

rave
raverave

uct

uct
uct  betavbeta uct       (2.5) 

uctN3100

100


beta  

8. PEBBLES is using the formula (2.6) (Sheppard, 2011): 

qRAVEbetaqUCTbeta  )1(                                   (2.6) 

   where beta is set according to Silver‟s dissertation (Silver, 2009). Both qUCT and 

qRAVE incorporate exploration terms from the Beta Distribution (Stogin et al., 

2010). 

9. PACHI is using a formula similar to that of AYA, except that Cuct and CRAVE are set 

to 0 (Baudis, 2011). The “Even game prior” is used to set vuct with 0.5 at n 

playouts, where n can be between 7 and 40. Another important prior is “playout 

policy hinter”, which uses the same heuristics (and code) as the playout policy to 

pick good tree moves. 

2.4  State-of-the-Art Go-Playing Programs 

In this section, we survey some start-of-the-art Go-playing programs as well as their 

contributions.  

2.4.1  Crazy Stone 

CRAZY STONE was created by Rémi Coulom, the inventor of MCTS (Coulom, 2006), 



 

22 
 

which has been regarded as the most significant contribution to Computer Go in 

recent years. At the 2006 Computer Olympiad, CRAZY STONE demonstrated the 

usefulness and effectiveness of MCTS by the overwhelming victory in the 9×9 Go 

tournament. In this tournament, CRAZY STONE defeated many senior Go-playing 

programs such as GNU GO, GOKING, JIMMY, etc, and tied with AYA and Go INTELLECT. 

In the first UEC Cup in 2007, CRAZY STONE won the exhibition match against Kaori 

Aoba 4p with 7 handicap stones. This game was described as “very beautiful”. Figure 

2.7 shows the final position of this game. CRAZY STONE finally killed the whole 

White‟s big group
6
 in the center (marked by ×) and secured a solid win. 

The second great contribution of Coulom is the supervised learning algorithm 

named Minorization-Maximization (MM) for computing the Elo ratings of move 

patterns (Coulom, 2007), which will be further investigated in Chapter 4. This 

learning algorithm is still used by some of the top-level Go-playing programs, such as 

ZEN and AYA. 

 

Figure 2.7: The final position of the exhibition match: Kaori Aoba 4p (White) vs. CRAZY 

                                                      
6
 A group consists of one or more loosely connected strings. 



 

23 
 

STONE (Black), with 7 handicap stones, in the first UEC Cup, 2007. Black won by 

resignation. 

     

Currently, Coulom is again working on CRAZY STONE after a suspension of about 

2 years. Right now, CRAZY STONE is rated 4-dan on the KGS Go Server (KGS) on a 

24-core machine (account CrazyStone, retrieved at 2011-07-14 T12:12:42+08:00
7
) on 

the 19×19 board and reached a Bayes-Elo rating (Coulom,2010) of 2914 in Computer 

Go Server (CGOS) on the 9×9 board (account bonobot, retrieved at 2011-07-14 

T12:15:34+08:00). 

2.4.2  MOGO 

MOGO was created in the beginning by Yizao Wang and Gelly Sylvain, supervised by 

Rémi Munos. Olivier Teytaud took the lead of the “MOGO team” after Yizao Wang 

and Gelly Sylvain left. There are several important contributions from the MOGO 

team. 

The first and the greatest contribution is applying UCT (Kocsis and Szepesv ári, 

2006), which was invented by Kocsis et al. independently at the same time as 

Coulom‟s MCTS, to computer Go (Gelly et al., 2006). It is widely maintained that the 

contributions of CRAZY STONE and MOGO collaboratively enable the Monte Carlo Go 

programs to be competitive with, and stronger than, the strongest traditional 

Go-playing programs, such as HANDTALK, THE MANY FACES OF GO and GO 

INTELLECT.  

The second contribution of MOGO team lies in the Monte Carlo part. The earliest 

creators of MOGO, mainly Sylvain Gelly and Yizao Wang, designed a sequence-like 

simulation (Gelly et al., 2006) that still has dominant influence on almost all the 

current strong Go-playing programs. This sequence-like simulation was further 

                                                      
7
 Presented in ISO 8061 date format. 



 

24 
 

improved by expert knowledge, such as nakade, and heuristics such as “Fill the board” 

(Chaslot et al., 2009). Figure 2.8 gives the example of sequence-like simulation.  

 

Figure 2.8: An example of sequence-like simulation proposed by MOGO team, cited from the 

paper “Modification of UCT with Patterns in Monte Carlo Go”. 

 

The main principle of such sequence-like simulation consists in considering the 

present move by responding to the previous move played by the opponent. Two 

important responses to the previous move are “save a string by capturing” and “save a 

string by extending”. For “save a string by capturing”, it means to save the string and 

put in atari by the previous move, by capturing its directly neighboring opponent 

string. “Save a string by extending” means to save the string and put in atari by the 

previous move by extending its liberty. Figure 2.9 gives an example of these 

responses.  

The most powerful part of the sequence-like simulation is considering the 3×3 

patterns around the previous move. It is generally stated that the 3×3 patterns designed 

by Yizao Wang and RAVE are the major factors that enabled MOGO to be the solid 

strongest Go-playing program in the period of the first half of 2007.  

This sequence-like simulation, handcrafted policy was improved by the offline 

reinforcement learning from games of self-play (Gelly and Silver, 2007). Gelly and 

Silver reported that this generated policy outperformed both the random policy and 



 

25 
 

the handcrafted policy by a margin of over 90%.  

The third big idea of MOGO team is RAVE (Gelly and Silver, 2007), which is a 

kind of the heuristic AMAF (All-Moves-As-First) (Brügmann, 1993; Helmbold and 

Wood, 2009). Presently, RAVE is reported to be utilized in almost every strong 

Go-playing program. Some authors even reported that RAVE boosts the playing 

strength of their programs over 200 Elo (Kato, 2008).  

Other contributions of MOGO include the parallelization of MCTS (Chaslot et al., 

2008; Gelly et al., 2009; Bourki et al., 2010), the never-ending learning algorithms for 

designing automatically an opening book by MCTS (Chaslot et al., 2009; Audouard et 

al., 2009; Gaudel et al., 2010) and so on. 

MOGOTW, a joint project between the MOGO team and a Taiwanese team, led by 

Chang-Shin Lee, composed of several Taiwanese universities and organizations, won 

the first 9×9 game as Black against the top professional Go player Chun-Hsun Chou 

9p, the winner of the international professional Go tournament LG Cup 2007, in the 

Human vs. Computer Go Competition at WCCI 2010. Figure 2.10 shows the final 

position of this game. 



 

26 
 

 

Figure 2.9: An example of “save a string by capturing” and “save a string by extending”. The 

previous move is marked by ∆. The string marked by × was put in atari by the previous move. 

Point A is “save a string by capturing” and point B is “save a string by extending”. 

 

Figure 2.10: The final position of the match: Chun-Hsun Chou 9p (White) vs. MOGOTW 

(Black), with komi 7.5. The stone marked by ∆ is the last move. Black won by resignation. 

2.4.3  GNU GO 

GNU GO is an open-source Go-playing program authored by many people. The first 

version of GNU GO was released at March 13th, 1989. It is still the most popular 

Go-playing program among many internet Go servers and the most common 



 

27 
 

experimental test bed in the field of computer Go.  

Before the rising of MCTS and UCT, GNU GO was among the strongest 

Go-playing programs. It won the gold medal in the 19×19 Go tournament at the 2003 

Computer Olympiad and silver medal in the 9×9 Go tournament at the 2004 Computer 

Olympiad. On the Bayes-Elo rating system of the Computer Go Server (CGOS), the 

rating of GNUGO-3.7.10-A0 on the 19×19 board is 1800 and the top ranked program is 

ZENGG-4X4C-TST, rated 2839 (retrieved at 2011-07-17 T17:22+08:00). This fact 

shows that in the past seven years, from 2004 to 2011, the improvement of the 

strongest Go-playing program is at least 1000 Elo.  

Figure 2.11 gives the position in the opening stage of the match between JIMMY 

(White) and GNU GO (Black) in round 1 in the 19×19 tournament at the 2003 

Computer Olympiad. This example shows that both GNU GO and JIMMY can play very 

good pattern shapes in the opening stage.  

 

Figure 2.11: Round 1 at the 2003 Computer Olympiad: JIMMY (White) vs. GNU GO (Black), 

with komi 6.5. The stone marked by ∆ is the previous move. Black won by resignation. 



 

28 
 

2.4.4  FUEGO 

FUEGO (Enzenberger et al., 2010) was created by Markus Enzenberger, Martin Müller 

and Broderick Arneson of the computer Go research group led by Martin Müller at the 

University of Alberta, Canada.  

FUEGO won the first 9×9 game as White against the top professional player 

Chun-Hsun Chou 9p in the Human vs. Computer Go Competition of 2009 IEEE 

International Conference on Fuzzy Systems. In 2010, FUEGO, running on a big shared 

memory machine at IBM with 112 threads (Segal, 2010), won the 4th UEC Cup. 

Figure 2.12 shows the position in the middle game of the final match between ZEN 

(White) and FUEGO (Black). FUEGO„s previous move, marked by ∆, was a severe and 

strong cut aiming to kill the White‟s group marked by ×. After winning this big 

semeai, Fuego secured the leading to the end of this game and won the 4th UEC Cup.  

 

Figure 2.12: A position of the final match in 4th UEC Cup: ZEN (White) vs. FUEGO (Black). 

Black won by resignation. 

 

Another contribution of FUEGO team is the release of the tool GoGui for 



 

29 
 

Go-playing program developers. GoGui allows direct communication to a Go engine 

by a command shell. It also provides a mechanism of automatic playing between any 

two Go-playing programs through Go Text protocol (GTP). Another convenience 

supplied by GoGui is the visualization of numerous features for the user-specific GTP 

commands. 

2.4.5  The Many Faces of Go 

THE MANY FACES OF GO (Fotland, 1993; Fotland, 2002) was developed by David 

Fotland, an American professional Go programmer who has worked on computer Go 

for over 25 years. THE MANY FACES OF GO is a commercial Go-playing program. It 

was among the strongest traditional Go-playing programs, then transformed to a 

Monte Carlo Go program mixed with the old engine.  

THE MANY FACES OF GO has outstanding achievement in tournaments and has 

been a competitive program since the 1980s. The older version that did not use MCTS 

won the 21st Century Cup in 2003 and the 1998 Ing Cup World Championship. At the 

2008 Computer Olympiad, THE MANY FACES OF GO won both the 9×9 and 19×19 Go 

tournaments. It also won the gold and bronze medals in the 13×13 Go and 19×19 Go 

tournaments at the 2010 Computer Olympiad. In the tournaments of KGS Go Server 

(KGS), THE MANY FACES OF GO has always been a participant at the top of the list.  

Figure 2.13 shows the game between ZEN (White) and THE MANY FACES OF GO 

(Black) in round 7 in the 19×19 Go tournament at the 2010 Computer Olympiad. The 

stone marked by ∆ is the last move when ZEN resigned. In this position, Black can 

either play at A or B to secure the center group marked by ○. It clearly shows the 

strong life-and-death and defense capabilities of THE MANY FACES OF GO (Fotland, 

2002) under ZEN„s continuously large-scale, fierce attack toward the center group.  



 

30 
 

 

Figure 2.13: The final position of the match in round 7 in the 19×19 Go tournament at the 

2010 Computer Olympiad: ZEN (White) vs. THE MANY FACES OF GO (Black). Black won by 

resignation. 

2.4.6  ZEN 

ZEN is a Japanese commercial Go-playing program created by Ojima Yoji (nickname 

Yamato), collaborating with Hideki Kato on cluster parallelization. ZEN was the 

winner in the 19×19 Go tournament at the 2009 Computer Olympiad. It is now 

doubtlessly the strongest Go-playing program (up to July 13th, 2011). On the KGS Go 

Server (KGS), ZEN is the only program that stands firm in 5-dan (account Zen19D, as 

shown in Figure 2.14, retrieved at 2011-07-14 T12:53:01+08:00) in blitz games and 

4-dan (account Zen19S, retrieved at 2011-07-14 T12:53:28+08:00) in longer games, 

running on a 26-core cluster. It also won all the tournaments of KGS Go Server (KGS) 

that it had participated up to July, 2011.  



 

31 
 

 

Figure 2.14: KGS Rank Graph for Zen19D 

 

Good at fighting has long been the main feature of ZEN. The success story of 

ZEN clearly demonstrates the efficacy of heavy and informative playouts, RAVE and 

larger patterns in the tree (Coulom, 2007), which were reported to contribute to ZEN‟s 

playing strength.  

In the 4th UEC Cup in 2010, ZEN won the exhibition match against Kaori Aoba 

4p with 6 handicap stones. Figure 2.15 shows the final position of this game. In this 

game, ZEN thoroughly showed its strong capabilities of attack through the whole 

game. It finally killed the White‟s big group marked × and came off with a great 

victory. 



 

32 
 

 

Figure 2.15: The final position of the exhibition match in the 4th UEC Cup: Kaori Aoba 4p 

(White) vs. ZEN (Black). Black won by resignation. 

     

In the Computer Go Competition at the 2011 IEEE International Conference on 

Fuzzy Systems held on June 27-30, 2011, in Taiwan, ZEN defeated the top 

professional Go player Chun-Hsun Chou 9p with 6 stones. Figure 2.16 shows the final 

position of this game. The stone marked by ∆ is the last move. In this game, 

Chun-Hsun Chou 9p consumed only 10 minutes totally, and he explained that 

“because I want to test the performance of ZEN in a fast game and most of ZEN‟s 

moves were exactly what I would play “. 



 

33 
 

 

Figure 2.16: The final position of the match in the Computer Go Competition at the 2011 

IEEE International Conference on Fuzzy Systems: Chun-Hsun Chou 9p (White) vs. ZEN 

(Black), with 6 handicap stones. Black won by 14.5 points. 

2.4.7  Other Programs 

Here we briefly and selectively introduce some other state-of-the-art and specific 

programs that are worth mentioning. PACHI by Petr Baudis and Jean-loup Gailly 

(Baudis and Gailly, 2010) is now the strongest open source program. VALKYRIA by 

Magnus Persson (Persson, 2010) features heavy and rich knowledge representation in 

the playout and is specifically competitive on the 9×9 board. LIBEGO by Łukasz Lew 

(Lew, 2010) is the fastest implementation of MCTS. OREGO by Peter Drake (Drake, 

2011) is one of the popular test beds among computer Go researchers. 

 

 



 

34 
 

Chapter 3  

ERICA 

In this chapter, we introduce our Go-playing program ERICA. Section 3.1 briefly 

reviews the development history of ERICA, as well as its standings in some of the 

tournaments that ERICA participated up to July 2011. Section 3.2 investigates the 

implementation of MCTS of ERICA along with some of our own ideas. Finally, 

Section 3.3 gives several examples picked from the games that ERICA played against 

human players to indicate its strength.  

3.1  Development History 

3.1.1  First Version Created on May 2008 

The first version of ERICA was created in May 2008, based on implementing MOGO‟s 

famous “UCT paper” (Gelly et al., 2006). The work was motivated by the impressive 

performance of CRAZY STONE and MOGO in the 9×9 competition at the 2007 

Computer Olympiad.    

    This earliest version of ERICA was written in pure C programming language. The 

speed was about 20,000 uniform random simulations per second on a single-core CPU 

of 2.26 GHz, on the 9×9 board. A board is realized by a single array, keeping the 

related information of a position, such as each string‟s color, liberty, owner
8
 and size.  

                                                      
8
 The owner of a string is the representative stone of it. 



 

35 
 

MOGO-type, fixed-sequence simulation and RAVE form the basic MCTS 

framework of the program. In this period, the personal communications with Yizao 

Wang, one of the creators of MOGO, helped considerably for the author‟s 

understanding of the “UCT paper” and to make ERICA stronger. 

In the Computational Intelligence Forum & World 9 × 9 Computer Go 

Championship held on September 25-27, 2008, in Taiwan, ERICA ended up in the 4th 

position. Table 3.1 shows the result of this competition. In this tournament, ERICA 

won a game against GO INTELLECT but lost to JIMMY, the strongest Taiwanese 

Go-playing program at that time. 

 

Position Program Wins Country 

1 MOGO 10 France 

2 GO INTELLECT 6 America 

3 JIMMY 6 Taiwan 

4 ERICA 6 Taiwan 

5 FUDO GO 6 Japan 

6 CPS 6 Taiwan 

7 GOSTAR 4 Taiwan 

8 GOKING 4 Taiwan 

9 HAPPYGO 2 Taiwan 

10 CHANGJUAN1 0 Taiwan 

Table 3.1: The result of the Computational Intelligence Forum & World 9×9 Computer Go 

Championship held on September 25-27, 2008, in Tainan, Taiwan. 

 

In the 9×9 Go tournament at the 2008 Computer Olympiad held on September 28 

to October 5, 2008, in Beijing, China, ERICA finished in 11th place among the 18 

participants. Figure 3.1 shows the game between ERICA (White) and AYA (Black) in 

round 2. In this game, thanks to the correct handling of seki in the playout, ERICA 

reversed the bad situation and won.  

 



 

36 
 

 

Figure 3.1: The final position of the match in round 2 in the 9×9 Go tournament at the 2008 

Computer Olympiad: ERICA (White) vs. AYA (Black). The stone marked by ∆ is the last move. 

The groups marked by ○ form a seki. White won by resignation. 

 

At the 2009 Computer Olympiad held on May 10-18, 2009, in Pamplona, Spain, 

ERICA participated in the 9×9 Go tournament with the same version that played in the 

previous year. Finally, ERICA scored the 6th position among the 9 participants. 

3.1.2  Second Version Created on June 2009 

In June 2009, a new version of ERICA was created, under the supervision of Rémi 

Coulom. The main advancement in this new version consists in the implementation of  

the Boltzmann softmax playout policy that was successful in Coulom‟s CRAZY STONE. 

In addition to RAVE, prior information was taken into account in the formulation of 

progressive bias (Chaslot et al., 2007). The supervised learning algorithm 

Minorization-Maximization (MM) (Coulom, 2007) was used to train the pattern 

weights.  

At the 2009 TAAI Computer Go Tournament held on October 30-31, 2009, in 

Taiwan, ERICA won the 3rd and 2nd position in the 9×9 Go (Table 3.2) and 19×19 Go 

(Table 3.3) tournaments respectively. 

 



 

37 
 

 

Position Program Country 

1 ZEN Japan 

2 MOGO France 

3 ERICA Taiwan 

Table 3.2: The result of the 9×9 Go tournament at the 2009 TAAI Go Tournament. 

 

Position Program Country 

1 ZEN Japan 

2 ERICA Taiwan 

3 DRAGON Taiwan 

Table 3.3: The result of the 19×19 Go tournament at the 2009 TAAI Go Tournament. 

     

In the next month, ERICA participated in the 3rd UEC Cup held on November 

28-29, 2009, in Japan, and at last scored the 6th position. In the round 2 of this 

tournament, ERICA for the first time defeated the well-known strong 19 × 19 

Go-playing program AYA, as shown in Figure 3.2. The last move is marked by ∆. In 

this game, ERICA (Black) killed several White‟s groups, marked by ×, and acclaimed 

a great victory. 

 

Figure 3.2: The final position of the match in round 2 of the 3rd UEC Cup: ERICA (White) vs. 



 

38 
 

AYA (Black).. Black won by resignation. 

3.1.3  Third Version Created on February 2010 

In February 2010, Łukasz Lew, the author of LIBEGO was a great help in speed 

optimization of ERICA. The author re-wrote many primary data structures and created 

a new version of ERICA, under the supervision of Coulom. For instance, macros, a sort 

of preprocessor in C programming language, were used extensively for loop unrolling. 

The speed of the simulation was accelerated by a factor of 2 compared to the previous 

version. In this period, we concentrated on 19×19 Go, trying hard to make use of 

larger patterns in the tree and improve the quality of the playout.  

At the 2010 Computer Olypmiad held on September 24 to October 2, 2010, in 

Kanazawa, Japan, ERICA won the gold and silver medals in the 19×19 Go (Fotland, 

2010) and 9×9 Go tournaments respectively. In the 19×19 Go tournament, after the 

final round is finished, three programs, ZEN, THE MANY FACES OF GO and ERICA were 

in a tie. The final positions were decided in the second playoff, when both ZEN and 

ERICA defeated THE MANY FACES OF GO and ERICA defeated ZEN. This indicates that 

the three programs were competitive in playing strength. Figure 3.3 shows the final 

match between ZEN (White) and ERICA (Black). This game was decided by a 

large-scale semeai in the opening stage. ZEN misread the semeai so that ERICA killed 

White‟s big group (marked by ×) and secured the lead until the end. 



 

39 
 

 

Figure 3.3: A position of the final match in the playoff of the 19×19 Go tournament at the 

2010 Computer Olympiad: ZEN (White) vs. ERICA (Black). The previous move is marked by 

∆. Black won by resignation. 

 

    In the 4th UEC Cup, held on 27th to 28th November 2010 in Japan, ERICA won 

the 3rd position
9
. Table 3.4 shows the result of this interesting tournament. In this 

tournament, the games between the strong programs clearly indicated that handling 

semeai correctly is particularly crucial. Figure 3.4 shows the position of the match 

between THE MANY FACES OF GO (White) and ERICA (Black) in round 4 of the 

preliminaries in the first day. This game was decided by the large-scale semeai in the 

middle game. The Black‟s group, marked by ○, has 4 liberties A, B, C and D while the 

White‟s group, marked by ×, has only 3 liberties E, F and G. Finally, ERICA played 

correctly to win this capturing race and defeated the tough rival THE MANY FACES OF 

GO.  

 

                                                      
9
 Special thanks to Professor Tsan-Sheng Hsu, Research Fellow of Academia Sinica, Taiwan, who 

kindly provided us the hardware resources, an 8-core server with 64GB memory, for this tournament.  



 

40 
 

Position Program Country 

1 FUEGO Canada 

2 ZEN France 

3 ERICA Taiwan 

4 AYA Japan 

5 THE MANY FACES OF GO America 

6 COLDMILK Taiwan 

7 CAREN Japan 

8 PERSTONE Japan 

Table 3.4: The result of the 4th UEC Cup, 2010. 

 

Figure 3.4: A position of the match in the 4th UEC Cup: THE MANY FACES OF GO (White) vs. 

ERICA (Black). The previous move is marked by ∆. Black won by resignation. 

3.2  MCTS in ERICA 

This section investigates the implementation of MCTS in ERICA, along with some of 

our own ideas. Note that these ideas might be re-inventions, since there are plenty of 

open source Go-playing programs to trace that we might overlook, not mentioning to 

the ones of unavailable source code. 

3.2.1  Selection  

The selection formula of ERICA is a combination of the strategies of UCT, RAVE and 



 

41 
 

progressive bias which maximizes the selection formula (3.1): 

e_biasprogressivUCTt)Coefficien-(1RAVEt Coefficien            (3.1) 

where Coefficient is the weight of RAVE computed by Silver‟s formula (Silver, 2009) 

and the exploration term of RAVE is taken off as Silver suggested. For the exploration 

term of UCT, Cuct is set to 0.6 for all board sizes.  

The term progressive_bias is computed by the formula (3.2): 

    
n

v
C e_biasprogressiv

uct

prior

PB                                    (3.2) 

where CPB is a constant which has to be tuned empirically. nuct, initialized to 1, is the 

visit count of this node and vprior 
is the prior value in [0,1]. After the end of search, the 

most visited candidate move in the root node is selected to play. For ERICA, the good 

value of PBC  on the 19×19 board is around 50. Note that the good values of PBC  

can vary in different board sizes. 

3.2.2  Expansion 

ERICA uses delayed node creation (a node is expanded in the nth (n>1) visit ) to 

reduce the memory overhead caused by RAVE, as explained in Section 2.2.2. For 

ERICA, the good value of n on the 19×19 board is around 5. In node creation, the prior 

computation takes into account various features which are partly listed in (Coulom, 

2007), according to the pattern weights given by MM.  

3.2.2.1  Larger Patterns 

For ERICA, the first and foremost feature in prior computation on the 19×19 board is 

larger patterns of diamond-shape (Stern at al., 2006). Firstly, larger patterns of up to 



 

42 
 

size 9 (by the definition in (Stern at al., 2006)) are harvested from the game records 

according to their frequencies of appearance. Then, these patterns are trained by MM 

together with other features that participate in prior computation. In ERICA, larger 

patterns are only used in progressive bias, not in the playout. The improvement from 

larger patterns is measured to be over 100 Elo. 

3.2.2.2  Other Features 

Other useful features for the 19×19 board are, for instance, ladder, distance features 

(distance to the previous move, distance to the move before the previous move and 

Common Fate Graph (CFG) distance (Graepel et al., 2001), etc) and various tactical 

features of semeai and life-and-death, such as “save a string by capturing”. 

3.2.3  Simulation 

3.2.3.1  Boltzmann Softmax Playout Policy 

In simulation stage, ERICA uses Boltzmann softmax playout policy (usually called 

softmax policy or Gibbs sampling (Geman and Geman; 1984)). Softmax policy was 

firstly applied to a Monte Carlo Go program in (Bouzy and Chaslot, 2006) and called 

psdueo-random moves that are generated by domain-dependent approach which uses 

a non-uniform probability. In the experiments of Bouzy and Chaslot, only 3×3 

patterns along with one-liberty urgency were served as the features. This scheme of 

pseudo-random, non-uniform probabilistic distribution was further improved and 

extended by Coulom to multiple features (Coulom, 2007).  

The softmax policy   is defined by the probability of choosing action a in 

state s: 




b

bs

as

T

T

e

e
as





 ),(

),(

),(   



 

43 
 

where Φ(s, a) is a vector of binary features, and θ is a vector of feature weights. 

    To explain the softmax policy, Figure 3.5 gives an example of a position in the 

playout, Black to move. The previous move is marked by ∆. For Black, now the only 

legal moves are A, B, C and D
10

.  

 

 

Figure 3.5: An example of a position in the playout. The previous move is marked by ∆. Black 

to move. 

 

Suppose there two binary features (for simplicity, ie is denoted by i ): 

1. Contiguous to the previous move. A candidate move that is directly neighboring 

to the previous move has this feature. The weight of this feature is 1 . Point A, C 

and D have this feature. 

2. Save the string, put in atari by the previous move, by extending. The weight of 

this feature is 2 . Point A has this feature. 

Then, the weight of each move is, 

A:  weight= 21     

B:  weight= 1  

C:  weight= 1   

D:  weight= 1, with no corresponding feature. 

                                                      
10

 In ERICA, an empty point that fills a real eye, such as E, is also regarded as an illegal move, though 

they are legal according to the Go rules. Forbid “filling a real eye” in the playout is commonly used in 

current Mone Carlo Go-playing programs. 



 

44 
 

 

Consequently, the probability to choose each move is given by 

A:  
11121

21








 

B:  
11121

1

 


 

C:  
11121

1

 


 

D:  
1

1

1121  
 

3.2.3.2  Move Generator 

The move generator in the playout of ERICA is depicted by the pseudocode shown in 

Table 3.5. The details are explained as follows.  

 

       

 

 

 

 

 

 

 

 

 

 

 

Table 3.5: Pseudocode of the move generator in the playout of ERICA.  

 

ComputeLocalFeatures deals with the local features (the features related to the 

MoveGenerator() 

{ 

    ComputeLocalFeatures(); 

    for (;;) 

    { 

If (TotalGamma == 0) 

        { 

           Move = PASS; 

           break; 

} 

        Move = ChooseMoveByProbability(); 

        If (ForbiddenMove(Move)) 

        { 

            SetZeroGamma(Move); 

            continue; 

}  

ReplaceMove(&Move); 

        break; 

    } 

    RecoverMoves();   

    Return Move; 

} 



 

45 
 

previous move or the move before the previous move, etc) and updates the gammas of 

the local moves which have the local features. 3×3 patterns and some of the local 

features of ERICA will be introduced in Section 4.3.2. 

The move to be generated is decided in the “for loop”. Firstly, if TotalGamma, 

the sum of the gammas of all the moves in this position, is equal to 0, Move is set to 

pass and returned immediately since no move has a nonzero probability. Otherwise, 

ChooseMoveByProbability chooses a move and assigns to Move by softmax policy as 

described in the previous section. 

After Move is chosen, ForbiddenMove examines that if Move is forbidden, which 

means it has a feature of zero weight. If Move is detected to be forbidden, 

SetZeroGamma subtracts its gamma from TotalGamma and resets the gamma to zero. 

The mechanism of ForbiddenMove is a compromise for the features which are too 

costly to incrementally update. Note that it is also possible to check the legality of 

Move in ForbiddenMove. The next section will give an example of ForbiddenMove.  

After the examination of forbiddenMove, Move is passed (call by reference) to 

ReplaceMove for further inspection. ReplaceMove is an extended version of 

ForbiddenMove in the sense that it not only examines if Move is forbidden or not, but 

also replaces it with a better move for the former case. Section 3.2.3.4 will give an 

example of ReplaceMove. 

Outside the “for loop”, when Move is ready to be returned, RecoverMoves sets 

back the gammas of the moves reset by forbiddenMove. 

3.2.3.3  ForbiddenMove 

Figure 3.6 gives an example of ForbiddenMove of ERICA‟s move generator in the 

playout, Black to move. In this example, point A is forbidden because it is a self-atari 

of 9 stones, which is a clearly bad move. In ERICA, a self-atari move is not forbidden 



 

46 
 

if it forms a nakade shape. 

 

Figure 3.6: An example of ForbiddenMove, Black to move. 

3.2.3.4  ReplaceMove 

Figure 3.7 gives an example of ReplaceMove of ERICA‟s move generator in the 

playout, Black to move. In this example, point A is forbidden and replaced with B by 

the rule “when filling a false eye, if there is a capturable group in one of the diagonal 

point, then capture the group instead of filling the false eye”. 

 

Figure 3.7: An example of ForbiddenMove, Black to move. 

3.2.4  Backpropagation 

In this section, we present two useful heuristics of RAVE to improve its performance. 

Section 3.2.4.1 presents the first heuristic, to bias RAVE updates by move distance. 

Section 3.2.4.2 presents the second heuristic, to fix RAVE updates for ko threats. 

3.2.4.1  Bias RAVE Updates by Move Distance 

When updating the RAVE values in a node, the heuristic “Bias RAVE Updates by 



 

47 
 

Move Distance” is to bias the simulation outcome according to how far the updated 

move was played away from this node. The number of the moves between this node 

and the updated move is defined as the distance of this move, denoted by d. The 

weight to bias the simulation outcome is defined as distance weight, denoted by w. If 

the simulation outcome is 1, then the updated outcome is 1−d*w; if the simulation 

outcome is 0, then the updated outcome is 0+d*w. Figure 3.8 gives an example. 

 

Figure 3.8: An example of “Bias RAVE Updates by Move Distance”. 

 

As far as we know, FUEGO was the first Go-playing program that proposed and 

used this idea
11

. This heuristic brings in the information of move sequence to RAVE. 

It is worth about 50 Elo in our experiments. 

3.2.4.2  Fix RAVE Updates for Ko Threats 

Figure 3.9 is an illustration to show the occasion where this heuristic is applicable. 

This position is selected from the game played on the KGS Go Server (KGS) between 

                                                      
11

 The details of FUEGO‟s approach to “Bias RAVE Updates by Move Distance” can be found in the 

documents of FUEGO in the official web site, http://fuego.sourceforge.net/.  

2 

3 

1 

A 

D

4 5 
B 

C 

B 

d

C 

d

Search path: Node 1→move A→Node 2→move B→Node 3→move C… 

Suppose simulation outcome=1 and w=0.001.  

When updating the RAVE values of Node 1, 

For move A, d=0 and the updated outcome of A is 1 – 0*0.001 = 1. 

For move B, d=1 and the updated outcome of B is 1 – 1*0.001 = 0.999. 

For move C, d=2 and the updated outcome of C is 1 – 2*0.001 = 0.998. 



 

48 
 

ajahuang [6d] (White) and Zen19D[5d] (Black). The previous move (marked by ∆) 

played by ZEN is clearly meaningless, though it‟s a sente move or ko threat that forces 

White to respond. Apparently, the correct move in this moment is A, namely to 

capture the ko. But why ZEN played a ko threat before capturing the ko? 

 

Figure 3.9: An example to show the occasion of the heuristic “Fix RAVE Updates for Ko 

Threats”: ajahuang [6d] (White) vs. Zen19D [5d] (Black). White won by resignation. 

 

The problem is (probably) out of RAVE. It is due to the intrinsic problem of 

RAVE that in the root node, the RAVE value of the ko threats (such as the previous 

move marked by ∆), which were searched in the lower levels of the tree, are also 

updated. But a ko threat is supposed to be played after a ko capture. So, in this 

example, the RAVE value of Black‟s ko threats (such as the previous move marked by 

∆) should not be updated in the root node. This is the main idea of the heuristic “Fix 

RAVE updates for Ko Threats”. Figure 3.10 gives an example of this heuristic to 

show how it works practically in the tree. In this example, the RAVE value of move E 

in Node 1 is not updated because it is detected as a ko threat move of Node 5. This 



 

49 
 

heuristic is worth about 30 Elo in our experiments. 

 

Figure 3.10: An example of “Fix RAVE Updates for Ko Threats”. 

3.3  KGS Games of ERICA 

Starting December 13, 2010, ERICA played on the KGS Go Server (KGS) using the 

account EricaBot, running on a 4-core CPU of 3.07 GHz. With short time setting of 

10×00:15 (15 seconds byo-yomi for 10 times), it was rated 3-dan in the beginning and 

about 3.75-dan on June, 2010, as shown in Figure 3.11.  

1 

A 

D
2 

3 

4 

5 

6 

C 

D

B 

D

D 

D

E 

D

7 

E 

D

Search path: Node 1→move A→Node 2→move B→Node 3→move C 

→Node 4→move D→Node 5→move E→Node 6. 

Suppose: 

A: Black captures a ko. 

B: White plays a ko threat. 

C: Black responses the ko threat threatened by B. 

D: White re-captures the ko. 

E: Black plays a ko threat. 

Then don’t update the RAVE value of move E in node 1. 



 

50 
 

 

Figure 3.11: The KGS Rank Graph for EricaBot. 

 

Figure 3.12 shows a 19×19 game between EricaBot (White) and a 2-dan human 

player BOThater36. In this game, ERICA captured the center group by ladder-atari 

(move 120) and won. This game shows that ERICA is a solid 3-dan player and features 

moderate opening play on the 19×19 board.  

 

 



 

51 
 

Figure 3.12: A 19×19 ranked game on KGS: EricaBot 3-dan (White) vs. BOThater36 2-dan 

(Black). White won by resignation. 

 

Figure 3.13 shows a 9×9 game between Erica9 (White) and a 5-dan human 

player guxxan. In this game, ERICA played a classical killing method (move 32 and 34) 

to kill the Black group in the top-left corner. This game shows that ERICA is already a 

solid high dan player on the 9×9 board. 

 

Figure 3.13: A 9×9 game on KGS: Erica9 (White) vs. guxxan 5-dan (Black). White won by 

resignation. 



 

52 
 

Chapter 4  

Monte Carlo Simulation Balancing 

Applied to 9×9 Go 

4.1  Introduction 

Monte Carlo evaluation of a position depends on the choice of a probability 

distribution over legal moves. A uniform distribution is the simplest choice, but 

produces poor evaluations. It is often better to play good moves with a higher 

probability, and bad moves with a lower probability. Playout policy has a large 

influence on the playing strength. Several methods have been proposed to optimize it. 

The simplest approach to policy optimization is trial and error. Some knowledge 

is implemented in playouts, and its effect on the playing strength is estimated by 

measuring the winning rate against other programs (Bouzy, 2005; Gelly et al., 2006; 

Chen and Chang, 2008; Chaslot et al., 2009). This approach is often slow and costly, 

because measuring the winning rate by playing games takes a large amount of time, 

and many trials fail. It is difficult to guess what change in the playout policy will 

make the program stronger, because making playouts play better often causes the 

Monte Carlo program to become weaker (Bouzy and Chaslot, 2006; Gelly and Silver, 

2007).  



 

53 
 

In order to avoid the difficulties of crafting a playout policy manually, some 

authors tried to establish principles for automatic optimization. We mention two of 

them. First, it is possible to optimize directly numerical parameters with generic 

stochastic optimization algorithms such as the cross-entropy method (Chaslot et al., 

2008). Such a method may work for a few parameters, but it still suffers from the 

rather high cost of measuring strength by playing games against some opponents. This 

cost may be overcome by methods such as reinforcement learning (Bouzy and Chaslot, 

2006; Gelly and Silver, 2007; Silver and Tesauro, 2009), or supervised learning from 

good moves collected from game records (Coulom, 2007). Supervised learning from 

game records has been quite successful, and is used in some top-level Go programs 

such as ZEN and CRAZY STONE. 

Second, among the reinforcement-learning approaches to playout optimization, a 

recent method is simulation balancing (SB) (Silver and Tesauro, 2009). It consists in 

tuning continuous parameters of the playout policy in order to match some target 

evaluation over a set of positions. This target evaluation is determined by an expert. 

For instance, it may be obtained by letting a strong program analyze positions quite 

deeply. Experiments reported by Silver and Tesauro indicate that this method is 

promising: they measured a 200-point Elo improvement over previous approaches. 

Yet, the SB experiments were promising, but not completely convincing, because 

they were not run in a realistic setting. They were limited to 2×2 patterns of stone 

configurations, on the 5×5 and 6×6 Go boards. Moreover, they relied on a much 

stronger program, FUEGO (Enzenberger and Müller, 2009), that was used to evaluate 

positions of the training database. Anderson (2009) failed to replicate the success of 

SB for 9×9 Go, but may have had bugs, because he did not improve much over 

uniform-random playouts. So, it was not clear whether this idea could be applied 

successfully to a state-of-the-art program. 



 

54 
 

This chapter presents the successful application of SB to ERICA, a state-of-the-art 

Monte Carlo program. Experiments were run on the 9×9 board. The training set was 

made of positions evaluated by ERICA herself. So this learning method does not 

require any external expert supervisor. Experimental results demonstrate that SB 

made the program stronger than its previous version, where patterns were trained by 

minorization-maximization (MM) (Coulom, 2007). Besides a raise in playing strength, 

a second interesting result is that pattern weights computed by MM and SB are quite 

different from each other. For instance, SB patterns may wish to play some rather bad 

shape positions, which are evaluated quite badly by MM, but that helps to arrive at a 

correct playout outcome. 

4.2  Description of Algorithms 

This section is a brief reminder of the MM (Coulom, 2007) and SB (Silver and 

Tesauro, 2009) algorithms. More details about these algorithms can be found in the 

references. 

4.2.1  Softmax Policy 

Both MM and SB optimize linear parameters of a Boltzmann softmax policy, which 

was introduced in Section 3.2.3.1. The objective of learning algorithms is to find a 

good value for  . 

4.2.2  Supervised Learning with MM 

MM learns feature weights by supervised learning over a database of sample moves 

(Coulom, 2007). MM is a maximization algorithm for computing 

maximum-a-posteriori values of  , given a prior distribution and sample moves. The 

principle of this algorithm dates back to at least Zermelo (1929). Its formulation and 

convergence properties were studied recently in a more general case by Hunter 



 

55 
 

(2004).     

When learning with MM, the training set is typically made of moves extracted 

from game records of strong players. It may also be made of self-play games if no 

expert game records are available. 

4.2.3  Policy-Gradient Simulation Balancing (SB) 

SB does not learn from examples of good moves, but from a set of evaluated positions. 

This training set may be made of random positions evaluated by a strong program, or 

a human expert. Feature weights are trained so that the average of playout outcomes 

matches the target evaluation given in the training set. Silver and Tesauro (Silver and 

Tesauro, 2009) proposed two such algorithms: policy-gradient simulation balancing 

and two-step simulation balancing. We chose to implement policy-gradient simulation 

balancing only, because it is simpler and produced better results in the experiments by 

Silver and Tesauro.  

The principle of Policy-Gradient Simulation Balancing consists in minimizing 

the quadratic evaluation error by the steepest gradient descent. Estimates of the 

gradient are obtained with a likelihood-ratio method (Glynn, 1987), also known as 

REINFORCE (Williams, 1992). 

The details of SB are given in Algorithm 1. In this algorithm, ),( as  is defined 

by: 

 

)(S*V 1  is the target value of position s1.  is the learning rate of steepest descent. z 

is the outcome of one playout, from the point of view of the player who made action 

1a (+1 for a win, -1 for a loss, for instance). si and ai are successive states and actions 

in a playout of T moves. M and N are integer parameters of the algorithm. V and g are 



 

56 
 

multiplied in the update of  , so they must be evaluated in two separate loops, in 

order to obtain two independent estimates. 

 

4.3  Experiments 

Experiments were run with the Go-playing program ERICA. The SB algorithm was 

applied repeatedly with different parameter values, in order to measure their effects. 

Playing strength was estimated with matches against FUEGO. The result of applying 

SB is compared to MM, both in terms of playing strength and feature weights. 

4.3.1  ERICA 

ERICA is developed by the author in the framework of his Ph.D. research. More details 

of ERICA can be found in Chapter 3. 

4.3.2  Playout Features 

This subsection and the remainder of this chapter uses Go jargon that may not be 

familiar to some readers. Explanations for all items of the Go-related vocabulary can 

be found in the Sensei‟s Library web site (http://senseis.xmp.net/). Still, it should be 

possible to understand the main ideas of this chapter without understanding that 

vocabulary. The playouts of ERICA are based on 3×3 stone patterns, augmented by the 



 

57 
 

atari status of the four directly connected points. These patterns are centred on the 

move to be played. By taking rotations, symmetries, and move legality into 

consideration, there is a total of 2,051 such patterns. In addition to stone patterns, 

ERICA uses 7 features related to the previous move (examples are given in Figure 4.1). 

 

1. Contiguous to the previous move. Active if the candidate move is among the 8 

neighbouring points of the previous move. Also active for all Features 2–7. 

2. Save the string in new atari, by capturing. The candidate move that is able to 

save the string in new atari by capturing has this feature. 

3. Same as Feature 2, which is also self-atari. If the candidate move has Feature 2 

but is also a self-atari, then instead it has Feature 3. 

4. Save the string in new atari, by extending. The candidate move that is able to 

save the string in new atari by extending has this feature. 

5. Same as Feature 4, which is also self-atari. 

6. Solve a new ko by capturing. If there is a new ko, then the candidate move that is 

able to solve the ko by capturing any one of the neighbouring strings has this feature. 

7. 2-point semeai. If the previous move reduces the liberties of a string to only two, 

then the candidate move that gives atari to its neighbouring string which has no way 

to escape has this feature. This feature deals with the most basic type of semeai. 



 

58 
 

 
Figure 4.1: Examples of Features 2,3,4,5,6 and 7. Previous move is marked with a dot. 

4.3.3  Experimental Setting 

The performances of MM and SB were measured by the winning rate of ERICA 

against FUEGO 0.4 with 3,000 playouts per move for both programs. In the empty 

position, ERICA ran 6,200 playouts per second, whereas FUEGO ran 7,200 playouts per 

second. For reference, performance of the uniform random playout policy and the 

MM policy are shown in Table 4.1. 

 

 

Table 4.1: Reference results against FUEGO 0.4, 1,000 games, 9×9, 3k playouts/move 

 

For fairness, the trainings of MM and SB were both performed with the same 

features described above. The training of MM was accomplished within a day, 

19 × 19 



 

59 
 

performed on 1,400,000 positions, chosen from 150,000 19×19 game records by 

strong players. The games were KGS games collected from the web site of Kombilo 

(Goertz and Shubert, 2007), combined with professional games collected from the 

web2go web site (Lin, 2009).  

The production of the training data and the training process of SB were 

accomplished through ERICA without any external program. The training positions 

were randomly selected from the games self-played by ERICA with 3,000 playouts per 

move. Then ERICA with playouts parameters determined by MM, was directly used to 

evaluate these positions. It took over three days to complete merely the production 

and evaluation of the training positions. From this viewpoint, SB training costs much 

more time than MM. 

The 9×9 positions were also used to measure the performance of MM in the 

situation equivalent to that of SB. The same 5k positions, that were served as the 

training set of SB, were trained on MM to compute the patterns. 

The strength of these patterns was measured and shown in Table 1 as 9×9 MM. 

4.3.4  Results and Influence of Meta-Parameters 

SB has a few meta-parameters that need tuning. For the gradient-descent part, it is 

necessary to choose M, N, and  . Two other parameters define how the training set 

was built: number of positions, and number of playouts for each position evaluation. 

Table 4.2 summarizes the experimental results with these parameters. 

 



 

60 
 

 

Table 4.2: Experimental results. The winning rate was measured 1,000 games against FUEGO 

0.4, with 3,000 playouts per move. 95% condifence is ±3.1 when the winning rate is close to 

50%, and ±2.5 when it is close to 80%. 

 

Since the algorithm is random, it would have been better to replicate each 

experiment more than once, in order to measure the effect of randomness. Unlike MM, 

SB has no guarantee to find the global optimum, and may have a risk to get stuck at a 

bad local optimum. Because of limited computer resources, we preferred trying many 

parameter values rather than replicating experiments with the same parameters. 

In the original algorithm, the simulations of outcome 0 are ignored when N 

simulations are performed to accumulate the gradient. The algorithm can be safely 

modified to use outcome -1/1 and replace z by (z - b), where b is the average reward, 

to make the 0/1 and -1/1 cases equivalent (Silver, 2009). The results of the 1st and 4th 

columns in Table 2 show that the learning speed of outcome -1/1 was much faster than 

0/1, so that the winning rate of outcome -1/1 of Iteration 20 (69.2%) was even higher 



 

61 
 

than that of outcome 0/1 of Iteration 100 (63.9%). This is an indication that -1/1 might 

be better than 0/1, but more replications would be necessary to make a general 

conclusion. 

The SB algorithm was designed to reduce the mean squared error (MSE) of the 

whole training set by stochastic gradient-descent. As a result, the MSE should 

gradually decrease if the training is performed on the same training set ever and again. 

Running the SB algorithm through the whole training set once is defined as an 

Iteration. Figure 4.2 shows that the measure MSE actually decreases. 

 

Figure 4.2: Mean square error as a function of iteration number. M=N=500,  =10, training 

set has 5k positions evaluated by 100 playouts. The error was measured by 1,000 playouts for 

every position for the training set. 

4.4  Comparison between MM and SB Feature 

Weights 

For all comparisons, SB values that scored 77.9% against FUEGO 0.4 were used (60 

iterations, fourth column of Table 4.2). Table 4.3 shows the  -values of local features 

( i = ie is a factor proportional to the probability that Feature i is played). Table 4.4 

shows some interesting 3×3 patterns (top 10, bottom 10, top 10 without atari, and 



 

62 
 

most different 10 patterns). Local features (Table 4.3) show that SB plays tactical 

moves such as captures and extensions in a way that is much more deterministic than 

MM. A possible interpretation is that strong players may sometimes find subtle 

alternatives to those tactical moves, such as playing a move in sente elsewhere. But 

those considerations are far beyond what playouts can understand, so more 

deterministic captures and extensions may produce better Monte Carlo evaluations. 

 

 

Table 4.3: Comparison of local features, between MM and SB 

 

Pattern weights obtained by SB are quite different from those obtained by MM. 

Figure 4.3 shows that SB has a rather high density of neutral patterns. Observing 

individual patterns on Table 4.4 shows that patterns are sometimes ranked in a 

completely different order. Top patterns (first two lines) are all captures and 

extensions. Many of the top MM patterns are ko-fight patterns. Again, this is because 

those occur quite often in games by strong human experts. Resolving a ko fight is 

beyond the scope of this playout policy, so it is not likely that ko-fight patterns help 

the quality of playouts. Remarkably, all the best SB patterns, as well as all the worst 

SB patterns (line 3) are border patterns. That may be because the border is where most 

crucial life-and-death problems occur. 

The bottom part of Table 4.4 shows the strangest differences between MM and 

SB. Lines 5 and 6 are top patterns without atari, and lines 7 and 8 are patterns with the 



 

63 
 

highest difference in pattern rank. It is quite difficult to find convincing interpretations 

for most of them. Maybe the first pattern of line 7 (with SB rank 34) allows to 

evaluate a dead 2×2 eye. After this move, White will probably reply by a nakade, thus 

evaluating this eye correctly. Patterns with SB ranks 40, 119, and 15 offer White a 

deserved eye. These are speculative interpretations, but they show the general idea: 

playing such ugly shapes may help playouts to evaluate life-and-death correctly. 

4.5  Against GNU Go on the 9×9 Board 

The SB patterns of subsection 4.3.5 were also tested against GNU GO. For having 

more evident statistical observations, ERICA was set to play with 300 playouts per 

move to keep the winning rate as close to 50% as possible. The results presented in 

Table 4.5 indicate that SB performs almost identical to MM. The reason for this result 

is maybe that progressive bias still has a dominant influence to guide the UCT search 

within 300 playouts. Also, it is a usual observation that improvement against GNU GO 

is often much less than improvement against other Monte Carlo programs. 

 



 

64 
 

 
Table 4.4: 3×3 patterns. A triangle indicates a stone in atari. Black to move. 

 

 

Table 4.5: Results against GNU GO 3.8 Level 10, 1,000 game, 9×9, 300 playouts/move 

 



 

65 
 

4.6  Playing Strength on the 19×19 Board 

The comparison between MM and SB was also carried out on the 19×19 board by 

playing against GNU GO 3.8 Level 0 with 1,000 playouts per move. Although the 

foregoing experiments confirm that SB surpasses MM on the 9×9 board under almost 

every setting of M, N, and  , MM is still more effective on the 19×19 board. In 

Table 4.6, the original SB scored only 33.2% with patterns of which the winning rate 

was 77.9% on the 9×9 board. Even if the  -values of all local features of SB are 

replaced by those of MM (MM and SB Hybrid), the playing strength still does not 

improve at all (33.4%). Nonetheless, the winning rate of SB raises to 41.2% if the 

-value of Feature 1 is manually multiplied by 4.46 (= (19×19)/(9×9)), which was 

empirically obtained from the experimental results. This clearly points out that 

patterns computed by SB on the 9×9 board are far from optimal on the 19×19 board. 

So far, it is not likely to use SB training directly on the 19×19 board, because even the 

top Go-playing programs are still too weak to offer good evaluations of the 19×19 

training set. However, good performance of SB on the 13×13 board can be expected. 

 

Table 4.6: Results against GNU GO 3.8 Level 0, 500 game, 19×19, 1,000 playouts/move 

4.7.  Conclusions 

Below we provide three conclusions. 

(1) The experiments presented in this chapter demonstrate the good performance of 

SB on the 9×9 board. This is an important result for practitioners of Monte Carlo tree 



 

66 
 

search, because previous results with this algorithm were limited to more artificial 

conditions. 

(2) The results also demonstrate that SB gives high weights to some patterns in a 

rather bad shape position. This remains to be tested, but it indicates that SB pattern 

weights may not be appropriate for progressive bias. Also, learning opening patterns 

on the 19×19 board seems to be out of the reach of SB, so MM is likely to remain the 

learning algorithm of choice for progressive bias. 

(3) The results of the experiments also indicate that SB has the potential to perform 

even better. Many improvements seem possible. We mention two of them. 

(3a) The steepest descent is an extremely inefficient algorithm for stochastic 

function optimization. More clever algorithms may provide convergence that is an 

order of magnitude faster (Schraudolph, 1999), without having to choose 

meta-parameters. 

(3b) It would be possible to improve the training set. Using many more positions 

would probably reduce risks of overfitting, and may produce better pattern weights. 

It may also be a good idea to try to improve the quality of evaluations by 

cross-checking values with a variety of different programs, or by incorporating 

positions evaluated by a human expert. 

 



 

67 
 

Chapter 5  

Time Management for Monte Carlo Tree 

Search Applied to the Game of Go 

5.1  Introduction 

One of the interesting aspects of MCTS that remains to be investigated is time 

management. In tournament play, the amount of thinking time for each player is 

limited. The most simple form of time control, called sudden death, consists in 

limiting the total amount of thinking time for the whole game. A player who uses 

more time than the allocated budget loses the game. More complicated time-control 

methods exist, like byo-yomi
12

, but they will not be investigated in this Chapter. 

Sudden death is the simplest system, and the most often used in computer 

tournaments. The problem for the program consists in deciding how much of its time 

budget should be allocated to each move.  

Some ideas for time-management algorithms have been proposed in the past 

(Hyatt, 1984; Markovitch and Sella, 1996; Baum and Smith, 1997; Yoshimoto et al., 

2006; Šolak and Vučković, 2009). Past research on this topic is mostly focused on 

classical programs based on the alpha-beta algorithm combined with iterative 

                                                      
12

 Wikipedia, http://en.wikipedia.org/wiki/Byoyomi. 



 

68 
 

deepening. The special nature of MCTS opens new opportunities for 

time-management heuristics. Many ideas have been discussed informally between 

programmers in the computer-Go mailing list (Sheppard et al., 2009; Yamashita, 

2010). This chapter presents a systematic experimental testing of these ideas, as well 

as some new improved heuristics.  

One particular feature of MCTS that makes it very different from alpha-beta 

from the point of view of time management is its anytime nature. Every single 

random playout provides new information that helps to evaluate moves at the root. 

There is no need to wait for a move to finish being evaluated, or for a deepening 

iteration to complete.  

In this Chapter, an enhanced formula and some heuristics are proposed. A 

state-of-the-art Go-playing program ERICA was used to run the experiments on 19×19 

Go and the result shows significant improvement in her playing strength. 

5.2  Monte Carlo Tree Search in ERICA and 

Experiment Setting 

All the experiments were preformed on ERICA, running on Dual Xeon quad-core 

E5520 2.26 GHz. In the 19×19 empty position, ERICA ran 2,600 simulations per 

second on single core. No opening book is used by ERICA, so that the time allocation 

formula takes effect immediately from the first move, rather than being delayed by the 

opening book. The improvement of the playing strength was estimated by playing 

with GNU GO 3.8 Level 2 with time control of 40 secs sudden death for ERICA and no 

time limitation for GNU GO. ERICA was set to resign if the UCT mean value of the 

root node is lower than 30%. For the reference to the playing strength and search 

speed of ERICA, Table 5.1 shows the winning rate against GNU GO 3.8 Level 2, with 



 

69 
 

fixed 500 and 1000 playouts per move. ERICA spends 19.6 secs and 46.3 secs on 

average for each game, respectively. In a sense, fixed playouts per move is also a kind 

of time management that risks using too less time or losing by timeout. 

 

 

Table 5.1: Fixed playouts per move against GNU GO 3.8, Level 2, 500 games, 19×19. 

5.3  Basic Formula 

In this chapter, the remaining time left to the program for the game is defined as 

RemainingTime. The allocated thinking time given by the time management formula 

for a position is defined as ThinkingTime. The most basic and intuitive time 

management formula is dividing the remaining time by a constant to allocate thinking 

time. 

 

According to the basic formula, most of the thinking time is allocated to the first 

move, then it is decreased gradually until the end of the game. Table 5.2 shows the 

result of various C for the basic formula. ERICA used less total thinking time on 

average when C is bigger, 36.5 secs for C = 20 and 27.2 secs for C = 80. However, 

these 9 seconds of additional thinking time did not bring any improvement to the 

playing strength (13.4% to 43.2%). 

 

 

 



 

70 
 

 
Table 5.2: Basic formula against GNU GO 3.8, Level 2, 500 games, 19×19. 

 

Two observations can be made for MCTS for 19×19 Go. Firstly, using more total 

thinking time is not bound to stronger playing. Conversely, using less total thinking 

time may be much stronger if the time is effectively and cleverly allocated. Secondly, 

allocating more thinking time in the beginning of the game, or the opening stage, is a 

waste, especially for a program that has not any form of opening or joseki database. 

5.4  Enhanced Formula Depending on Move 

Number 

The basic formula is reasonable since the characteristics of MCTS ensure the more 

accurate search result in the endgame. However, its main drawback is that it allocates 

too much time to the opening stage. To remedy such weak point, a simple idea is to 

make the denominator of the basic formula depend on the move count so as to 

allocate more time in the middle game, where the complicated and undecided semeai 

and life-and-death conditions appear most frequently. The following is an enhanced 

formula based on such an idea. 

 

By this formula, if the program is Black, RemainingTime/(C + MaxPly) is 



 

71 
 

assigned to the first move, RemainingTime/(C + MaxPly-2) to the second. It reaches 

the peak and goes back to the form of the basic formula in MaxPly with the value 

RemainingTime/C. Figure 5.1 gives an example of time per move for C = 80 and 

MaxPly = 160. The result of different MaxPly is shown in Table 5.3. For comparing 

with the best experimental performance of the basic formula, C is fixed at 80. The 

winning rate of ERICA is improved from 43.2% to 49.2% for MaxPly = 80. This 

strongly confirms the promising effectiveness of the enhanced formula. 

 

 

Figure 5.1: Thinking time per move, for different kinds of time-allocation strategies. 

 

Table 5.3: Enhanced formula (C=80) against GNU GO 3.8, Level 2, 500 games, 19×19. 

     

    A similar formula based on the principle of playing faster in the beginning was 



 

72 
 

proposed by Yamashita (Yamashita, 2010): 

 

The winning rate of this time-allocation strategy was measured after 500 games to be 

40.8±2.2%. It performs even worse than the basic formula. As shown on Figure 5.1, 

the Yamashita formula still wastes too much time in the beginning of the game. 

5.5  Some Heuristics 

In this section, the statistical information of the root node is used to dynamically 

adjust the thinking time. This makes the time allocation stochastic, depending on the 

internal situation of MCTS. This is correlated with the formula in selection stage. In 

the first section, the UCT selection formula in ERICA is introduced. The following 

sections described the heuristics that works successfully in the experiments. 

5.5.1  UCT Formula in ERICA 

The UCT formula in ERICA is a combination of UCT, RAVE and progressive bias as 

introduced in Section 3.2.1.  

5.5.2  Unstable-Evaluation Heuristic 

In the computer Go area, this heuristic was firstly suggested in (Sheppard et al., 2009) 

and is used after the end of searching for ThinkingTime. The key concept is that if the 

most visited move has not the largest score, that means either the most visited move 

was becoming of low score or a better move was just being found or a potential good 

move was still exploited near the end of the search. For making sure which move is 

the best, search is performed for another ThinkingTime/2. The result in Table 5.4 

shows that this heuristic is very useful. ERICA used around 4 secs more on average 



 

73 
 

and the winning rate was raised from 47.4% to 54.6% with C = 80 and MaxPly = 160. 

The improvement demonstrates that such additional 4 secs search effort was cleverly 

performed in the right occasions. 

 

 

Table 5.4: Enhanced formula (C=80) with Unstable-Evaluation heuristic against GNU GO 3.8, 

Level 2, 500 games, 19×19. 

5.5.3  Think Longer When Behind 

The main objective of time management for MCTS is to make the program think, in 

every position during the whole game, for appropriate time to maximize its 

performance and to win the game. As a result, time management when losing 

becomes meaningless, since the program will lose anyway, no matter how much time 

is allocated. This fact introduces the heuristic of thinking another P×ThinkingTime 

when behind, in which UCT mean of the root node is lower than a threshold T. Since 

this heuristic is also applied after the end of searching for ThinkingTime, the pseudo 

code of combining these two heuristics is described in Algorithm 1, to clarify the 

sequence. 



 

74 
 

 

Table 5.5 shows this heuristic further improves the winning rate of Erica from 

54.6% to 60% with T = 0:4 and P = 1. This indicates that it is effective to make the 

program think longer to try to reverse the situation when behind. 

 

 

Table 5.5: Enhanced formula (C=80, MaxPly=160) with Unstable-Evaluation heuristic and 

Think Longer When Behind (T=0.4) against GNU GO 3.8, Level 2, 500 games, 19×19. 

5.6  Using Opponent’s Time 

This section discusses the policy of using opponent‟s thinking time, usually called 

pondering. The most basic type of pondering, to search as usual when opponent is 

thinking then re-use the subtree, is discussed in subsection 5.6.1. Subsection 5.6.2 

presents another type of pondering, to search and focus on a fixed number of the 

guessed moves. A heuristic of pondering, reducing thinking time according to 

simulation percentage of the played move in pondering, is given in subsection 5.6.3. 

In all the experiments, the enhanced formula with C = 80 and the unstable-evaluation 



 

75 
 

heuristic are applied. MaxPly was set to 140, 160 and 180 for faster testing speed. 

5.6.1  Standard Pondering 

Pondering, thinking when the opponent is thinking, is a popular and important 

technique for Go-playing programs. It enables the program to make use of the 

opponent‟s time, rather than simply wait and do nothing. In MCTS, the simplest type 

of pondering, called Standard Pondering, is to search as if it‟s our turn to play and 

re-use the subtree of the opponent‟s played move. Table 5.6 shows the result of 

Standard Pondering. ERICA got a big jump in the playing strength (for example, from 

54.8% to 67.4% with C =80 and MaxPly=140). GNU GO used more thinking time 

than ERICA during the game, so this experiment might over-estimate the effect of 

pondering. Still, it is a clear indication that pondering can have a strong effect on 

playing strength. 

 

 
Table 5.6: Standard Pondering against GNU GO 3.8, Level 2, 500 games, 19×19. 

5.6.2  Focused Pondering 

The other type of pondering, called Focused Pondering, consists in searching 

exclusively a fixed number N of selected moves, which are considered to be most 

likely to be played by the opponent. The priority of a move to be selected is the score 

of UCT formula as mentioned previously. If the opponent‟s played move is among the 

selected moves, it is called a ponder hit, otherwise a ponder miss. The prediction rate 

(PR) is defined as the proportion of the ponder hits, which is ponder hits/(ponder 

hits+ponder misses). The result of Focused Pondering with N = 10, shown in Table 



 

76 
 

5.7 indicates that its performance is very limited. For N = 5, shown in Table 5.8, the 

strength of Focused Pondering is almost identical to that of Standard Pondering. This 

is maybe because the prediction rate (42% for N = 5 and 57% for N = 10) is not high 

enough so that the actual played move was not searched as much on average as 

Standard Pondering would do. The score 69.8% for N = 5 and MaxPly = 160 is likely 

to be a noise. After a lot of testings, no good result can be found for Focused 

Pondering. 

 

 
Table 5.7: Focused Pondering (N=10) against GNU GO 3.8, Level 2, 500 games, 19×19. 

 

 

 

Table 5.8: Focused Pondering (N=5) against GNU GO 3.8, Level 2, 500 games, 19×19. 

 

The performance of pondering is entirely decided by the search amount of the 

played move. The tradeoff is between N, the number of selected moves, and the 

expected search amount that will be performed on them. Strictly speaking, Standard 

Pondering is also a form of Focused Pondering, with selecting every legal move in the 

position and 100% prediction rate, to guarantees the played move is in the 

consideration anyway, even if it is rarely visited. 

To evaluate a pondering strategy, it is better to test against an opponent that also 



 

77 
 

ponders. For this end, ERICA was set to play against herself with different pondering 

policies. The result of self-play given in Table 5.9 shows that the performance of 

Focused Pondering is still not significant. It scores 52.8% for N = 3, with a very high 

prediction rate (53.9%). This again shows the poor performance of Focused 

Pondering, since it will perform much worse when against a different program along 

with a much lower predication rate. 

 

Table 5.9: Self-play: Focused Pondering against Standard Pondering, both with Enhanced 

Formula (C=180, MaxPly=160), 500 games, 19×19. 

5.6.3  Reducing ThinkingTime According to the Simulation 

Percentage 

This heuristic is based on the popular idea in human playing: play faster if we guess 

right in pondering. In MCTS, the degree of rightness or wrongness for a guess can be 

quantified to the percentage of search performed on the opponent‟s played move 

during pondering. And the amount of search can be easily translated to the simulation 

percentage. In practice, thinking faster means reducing ThinkingTime by the search 

time spent on the played move. Assume that opponent‟s thinking time is t, and the 

simulation percentage of the played move in pondering is s (0 ≤ s ≤ 1), then the 

reduced time is t × s.  

Besides saving time for the rest of the game, playing faster also prevents the 

opponent from stealing thinking time. The experiment result of self play indicates that 

this heuristic does not improve performance significantly. Combined with Standard 

Pondering, its winning rate is 52.4%±2.2, after 500 games, against Standard 

Pondering. It scores 53.8%±2.2, combined with Focused Pondering (N = 3). 



 

78 
 

5.7  Conclusions 

Experimental results presented in this chapter demonstrate the effectiveness of a 

variety of time allocation strategies. Playing strength can be improved very 

significantly with a clever management of thinking time. 

An interesting direction for future research would consist in finding good 

time-allocation schemes for other board sizes. Time management policies are very 

different between 9×9 and 19×19 Go. In 9×9 Go, the opening book can be very deep 

to delay the occasion when the time allocation formula is applied. Besides, owning to 

much smaller search space, the search result of MCTS is usually much more accurate. 

This explains the preference for allocating more time in the opening stage. 

 

 

 

 

 

 

 

 

 

 



 

79 
 

Chapter 6  

Conclusions and Proposals for Future 

Work 

In this dissertation, we propose some new heuristics for MCTS applied to the game of 

Go, including two major contributions. These helped our Go-playing program ERICA 

win the 19×19 Go tournament at the 2010 Computer Olympiad. 

6.1   Simulation Balancing (SB) 

The first contribution is Simulation Balancing (SB), discussed in Chapter 4, applied to 

9×9 Go. SB is a technique used for training the parameters of the simulation. The 

experiments demonstrated that ERICA, equipped with the SB parameters, was almost 

90 Elo stronger than that with MM.  

Although SB did not work well on the 19×19 board in our experiments, the good 

results on the 9×9 board strongly indicates that the gammas from 

Minorization-Maximization (MM) are far from optimal. This fact convinced us to 

manually tune the MM gammas, especially for the tactical features, on the 19×19 

board and it contributed considerably to raise ERICA‟s playing strength. SB 

experiments also confirm the generally maintained conjecture about the playout 



 

80 
 

policy: to evaluate the playout correctly, local tactical responses should be absolute, 

and patterns only matter if there are no local tactics. This principle explains why 

MOGO-type simulation does work, though it still has much less flexibility than 

CRAZYSTONE-like simulation.  

The reason why SB prefers to play so many bad patterns remains to be 

investigated. SB has more potential to perform even better by speeding up the 

learning algorithm or improving the evaluation of the training positions. Also, the 

good performance of SB on the 13×13 board can be appropriately expected. 

6.2   Time Management  

The second contribution of this research is the systematic experiments of the various 

time management schemes for 19×19 Go, discussed in Chapter 5. These time 

management algorithms were performed on ERICA with the time setting 40 seconds 

Sudden Death (SD). The experiments confirmed the effectiveness of several heuristics, 

such as the enhanced formula and the unstable-evaluation Heuristic. Pondering was 

also proved to be very crucial to playing strength.  

One of the future and interesting directions is to investigate the time management 

schemes on other board sizes, such as 9×9, especially with a strong opening book. 

Other heuristics using the statistical data of MCTS also remains to be explored and 

tested. It is of great interest to try these heuristics with a longer time setting as well. 

6.3   Other Prospects  

We believe adaptive playout is a rising star of computer Go. To solve the semeai 

problems completely, heavy knowledge implementation scarcely can be the right way, 

because there are really too many cases for a perfect algorithm to exist. Letting the 



 

81 
 

playout learn from itself, under the framework of the softmax policy, is of great 

interest to investigate. Also, feeding the information from the tree to the playout in 

order to solve the semeai problems, as one author (Yamato, the author of ZEN) 

suggested recently in the computer Go mailing list, also deserves considerable 

attention. We hope this research can be inspiring and encouraging to other computer 

Go researchers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

82 
 

References 

Abramson, B. (1990). Expected-Outcome: A General Model of Static Evaluation. 

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, No. 2, pp.  

182-193. 

 

Allis, V. (1994). Searching for Solutions in Games and Artificial Intelligence. Ph.D. 

Thesis, University of Limburg, Masstricht, The NetherLands. 

 

Anderson, D.A. (2009). Monte Carlo search in Games. Technical report, Worcester 

Polytechnic Institute. 

 

Audouard, P., Chaslot, G., Hoock, J.-B., Rimmel, A., Perez, J., and Teytaud, O. (2009). 

Grid coevolution for adaptive simulations; application to the building of opening 

books in the game of Go. In EvoGames, Tuebingen Allemagne. Springer. 

 

Auer, P., Cesa-Bianchi, N., Freund, Y. and Schapire, R. E. (1995). Gambling in a 

rigged casino: the adversarial multi-armed bandit problem. In Proceedings of the 36th 

Annual Symposium on Foundations of Computer Science, pp. 322-331, IEEE 

Computer Society Press, Los Alamitos, CA. 

 

Auer, P., Cesa-Bianchi, N. and Fischer, P. (2002). Finite-time Analysis of the 

Multiarmed Bandit Problem. Machine Learning Journal, 47, pp. 235-256. 

 

Baier, H. and Drake, P. (2010). The Power of Forgetting: Improving the 

Last-Good-Reply Policy in Monte Carlo Go. IEEE Transactions on Computational 

Intelligence and AI in Games, Vol. 2, pp. 303-309. 

 

Baudis, P. (2011). Exploration formulas for UCT. Computer-Go mailing list, 

http://www.mail-archive.com/computer-go@dvandva.org/msg02154.html. 

Retrieved at 2011-07-17 T19:45:45+08:00. 

 

Baudis, P. and Gailly, J.-l. (2011). Pachi: Software for the Board Game of Go / Weiqi / 



 

83 
 

Baduk.  

http://pachi.or.cz/. 

Retrieved at 2011-07-14 T14:38:10+08:00. 

 

Baum, E. B. and Smith, W. D. (1997). A Bayesian Approach to Relevance in Game 

Playing. Artificial Intelligence, Vol. 97, No.1–2, pp. 195-242. 

 

Bourki, A., Chaslot, G., Coulm, M., Danjean, V., Doghmen, H., Hérault, T., Hoock, 

J.-B., Rimmel, A., Teytaud, F., Teytaud, O., Vayssière, P., and Yu, Z. (2010). 

Scalability and Parallelization of Monte-Carlo Tree Search. Proceedings of the 5th 

International Conference on Computer and Games 2010. 

 

Bouzy, B. (2003). Associating domain-dependent knowledge and Monte Carlo 

approaches within a Go program. Information Sciences, Vol. 175, pp. 247-257. 

 

Bouzy, B. (2005a). Move Pruning Techniques for Monte-Carlo Go. In Joint 

Conference on Information Sciences. Proceedings of the 11th Advances in Computer 

Games conference (ACG-11), pp. 104-119. 

 

Bouzy, B. (2005b). History and territory heuristics for Monte-Carlo Go. In Heuristic 

Search and Computer Game Playing Session, Joint Conference on Information 

Sciences, Salt Lake City. 

 

Bouzy, B. and Cazenave, T. (2001). Computer Go: an AI-oriented Survey. Artificial 

Intelligence, Vol. 132, issues 1, pp. 39-103. 

 

Bouzy, B. and Chaslot, G. (2005). Bayesian generation and integration of 

K-nearest-neighbor patterns for 19×19 Go. IEEE 2005 Symposium on Computational 

Intelligence in Games (eds. G. Kendall & Simon Lucas), pp. 176-181. 

 

Bouzy, B. and Chaslot, G. (2006). Monte-Carlo Go Reinforcement Learning 

Experiments. 2006 IEEE Symposiumon Computational Intelligence and Games (eds. 

G. Kendall and S. Louis), pp. 187-194, Reno, USA. 

 

Bouzy, B. and Helmstetter, B. (2003). Monte-Carlo Go Developments. Proceedings of 

the 10th Advances in Computer Games conference (ACG-10), Graz 2003, Book 

edited by Kluwer, H. Jaap van den Herik, Hiroyuki Iida, Ernst A. Heinz, pp. 159-174. 

 



 

84 
 

Brügmann, B. (1993). Monte Carlo Go. Not formally published. 

http://www.althofer.de/Bruegmann-MonteCarloGo.pdf. 

Retrieved at 2011-07-18 T10:16:45+08:00. 

 

Burmeister, J. and Wiles, J. (1995). The Challenge of Go as a Domain for AI Research: 

a Comparison Between Go and Chess. Proceedings of the Third Australian and New 

Zealand Conference on Intelligent Information System, pp. 181-186. 

 

Campbell, M., Hoane, A. J. and Hsu, F. H. (2002). Deep Blue. Artificial Intelligence, 

Vol. 134, issues 1-2, pp. 57-83. 

 

Chaslot, G., Fiter, C., Hoock, J.-B., Rimmel, A., and Teytaud, O. (2009). Adding 

Expert Knowledge and Exploration in Monte-Carlo Tree Search. Proceedings of the 

Twelfth International Advances in Computer Games Conference, pp. 1-13, Pamplona, 

Spain. 

 

Chaslot, G., J-B. Hoock, J.-B., Perez, J., Rimmel, A., Teytaud, O. and Winands, M. 

(2009). Meta Monte-Carlo Tree Search for Automatic Opening Book Generation. 

Proceedings of the IJCAI'09 Workshop on General Intelligence in Game Playing 

Agents, pp. 7-12. 

 

Chaslot, G., Winands, M., Bouzy, B., Uiterwijk, J. W. H. M., and Herik, H. J. van den 

(2007). Progressive Strategies for Monte-Carlo Tree Search. Proceedings of the 10th 

Joint Conference on Information Sciences (ed.P. Wang), pp. 655–661, Salt Lake City, 

USA. 

 

Chaslot, G., Winands, M. and Herik, H. J. van den (2008). Parallel Monte-Carlo Tree 

Search. Proceedings of the Conference on Computers and Games 2008, Vol. 5131 of 

Lecture Notes in Computer Science, pp. 60-71. 

 

Chen, K. (1989). Group identification in Computer Go. Heuristic Programming in 

Artificial Intelligence, Levy & Beal ( Eds.), pp. 195-210. 

 

Chen, K. and Chen, Z. (1999). Static analysis of life and death in the game of Go. 

Information Science, Vol. 121, pp. 113-134. 

 

Coquelin, P.-A. and Munos, R. (2007). Bandit Algorithm for Tree Search, Technical 

Report 6141, INRIA. 

http://www.personeel.unimaas.nl/g-chaslot/papers/ijcai09.pdf
http://www.personeel.unimaas.nl/g-chaslot/papers/parallelMCTS.pdf
http://www.personeel.unimaas.nl/g-chaslot/papers/parallelMCTS.pdf


 

85 
 

 

Coulom, R. (2006). Efficient Selectivity and Backup Operators in Monte-Carlo Tree 

Search. Proceedings of the 5th International Conference on Computer and Games 

(eds. H. J. van den Herik, P. Ciancarini, and H. J. Donkers), Vol. 4630 of Lecture 

Notes in Computer Science, pp. 72-83, Springer, Turin, Italy. 

 

Coulom, R. (2007). Computing Elo Ratings of Move Patterns in the Game of Go. 

ICGA Journal, Vol. 30, No. 4, pp. 198-208. 

 

Coulom, R. (2010). Bayesian Elo Rating.  

http://remi.coulom.free.fr/Bayesian-Elo/#usage. 

Retrieved at 2011-07-17 T17:19:35+08:00. 

 

Drake, P. (2009). The Last-Good-Reply Policy for Monte-Carlo Go. ICGA Journal 

Vol. 32, pp. 221-227. 

 

Drake, P. (2011). Orego.  

http://legacy.lclark.edu/~drake/Orego.html.  

Retrieved at 2011-07-14 T14:43:55+08:00. 

 

Enzenberger, M. and Müller, M. (2009). A Lock-Free Multithreaded Monte-Carlo 

Tree Search Algorithm. In Advances in Computer Games (ACG12), pp. 14-20, 

Pamplona Espagne, Berlin: Springer. 

 

Enzenberger, M., Müller, M., Arneson B. and Segal R. (2010). Fuego - An 

Open-Source Framework for Board Games and Go Engine Based on Monte Carlo 

Tree Search. IEEE Transactions on Computational Intelligence and AI in Games, Vol.  

2, No. 4, pp. 259-270. Special issue on Monte Carlo Techniques and Computer Go. 

 

Fotland, D. (2011). Exploration formulas for UCT.  

http://www.mail-archive.com/computer-go@dvandva.org/msg02143.html. 

Retrieved at 2011-07-17 T19:47:50+08:00. 

 

Fotland, D. (2010). ERICA wins Go 19x19 Tournament. ICGA Journal, Vol. 33, pp.  

174-178. 

 

Fotland, D. (2002). Static Eye in "The Many Faces of Go". ICGA Journal, Vol. 25, No. 

4, pp. 203-210. 



 

86 
 

 

Fotland, D. (1996). World Computer Go Championships.  

http://www.smart-games.com/worldcompgo.html. 

Retrieved at 2011-07-17 T19:44:35+08:00. 

 

Fotland, D. (1993). Knowledge Representation in The Many Faces of Go.  

http://www.smart-games.com/knowpap.txt. 

Retrieved at 2011-07-17 T19:43:01+08:00. 

 

Gelly, S., Hoock, J.-B., Rimmel, Arpad, Teytaud, O. and Kalemkarian, Y. (2008). The 

Parallelization of Monte-Carlo Planning. In International Conference on Informatics 

in Control, Automation and Robot, Madeira, Portugal. 

 

Gelly, S. and Silver, D. (2007). Combining Online and Offline Knowledge in UCT. 

Proceedings of the 24
th

 International Conference on Machine Learning, pp. 273-280, 

Corvallis Oregon USA. 

 

Gelly, S. and Silver, D. (2011). Monte-Carlo Tree Search and Rapid Action Value 

Estimation in Computer Go. Artificial Intelligence, Vol. 175, No. 11, pp. 1856-1875. 

 

Gelly, S., Wang, Y., Munos, R. and Teytaud, O. (2006). Modifications of UCT with 

Patterns in Monte-Carlo Go. Technical Report 6062, INRIA. 

 

Gaudel, R., Hoock, J.-B., Pérez, J., Sokolovska, N., Teytaud, O. (2010). A Principled 

Method for Exploiting Opening Books. Proceedings of the 5th International 

Conference on Computer and Games 2010, pp. 136-144. 

 

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the 

Bayesian restoration of images. Readings in computer vision: issues, problems, 

principles, and paradigms, pp. 564-584. 

 

Graepel, T., Goutrié, M., Krüger, M. and Herbrich R. (2001). Learning on Graphs in 

the Game of Go. Lecture Notes in Computer Science, Vol. 2130/2001, pp. 347-352. 

 

Herik, H. J. van den, Uiterwijk, J. W. H. M., Rijswijck, J. van. (2002). Games solved: 

Now and in the future. Artificial Intelligence, Vol. 134, pp. 277-311.  

 

Helmbold, D. P. and Wood, A. P. (2009). All-Moves-As-First Heuristics in 

http://www.smart-/


 

87 
 

Monte-Carlo Go. In Proceedings of the 2009 International Conference on Artificial 

Intelligence, ICAI’09/ISBN 1-60132-108-2, Editors: Arabnia, de la Fuente, Olivas, pp.  

605-610, Los Vegas, USA. 

 

Hendrik, B. (2010). Adaptive Playout Policies for Monte-Carlo Go. Master thesis, 

Institut für Kognitionswissenschaft, Universität Osnabrück. 

 

Kocsis, L. and Szepesv ári, C. (2006). Bandit Based Monte-Carlo Planning. In J. 

Furnkranz, T. Scheffer and M. Spiliopoulou (eds.), Machine Learning: ECML 2006, 

Lecture Notes in Artificial Intelligence 4212, pp. 282-293. 

 

Jasiek, R. (1997). Elementary Rules.  

http://home.snafu.de/jasiek/element.html. 

Retrieved at 2011-07-17 T19:42:20+08:00. 

 

Huang, S. C., and Yen, S. J. (2010). Many Faces of Go Wins Computer 13×13 Go 

Tournament. ICGA Journal, Vol. 33, No. 3, pp. 172-173. 

 

Hyatt, R. M. (1984). Using time wisely. ICCA Journal, Vol. 7, No. 1, pp. 4-9. 

 

Kato, H. (2008). More UCT / Monte-Carlo questions (Effect of rave). Computer-Go 

mailing list. 

http://www.mail-archive.com/computer-go@computer-go.org/msg07135.html. 

Retrieved at 2011-07-17 T19:48:49+08:00. 

 

Knuth, D. E., and Moore, R. W. (1975). An Analysis of Alpha-Beta Pruning, Artificial 

Intelligence, Vol. 6, No. 4, pp. 293-326. 

 

Lew, L. (2010). Library of effective Go routines.  

http://github.com/lukaszlew/libego. 

Retrieved at 2011-07-14 T14:27:45+08:00. 

 

Lichtenstein, D. and and Sipser, M. (1978). Go is PSPACE-hard. Foundations of 

Computer Science, pp. 48-54. 

 

Lin, C. H. (2009). Web2Go web site. 

http://web2go.board19.com/. 

Retrieved at 2011-07-26 T12:07:05+08:00. 



 

88 
 

 

Markovitch, S. and Sella, Y. (1996). Learning of resource allocation strategies for 

game playing. Computational Intelligence, vol. 12, pp. 88-105. 

 

Müller, M. (2002). Computer Go. Artificial Intelligence, Vol. 134, issues 1-2, pp.  

145-179. 

 

Persson, M. (2010). Valkyria. Sensei‟s Library.  

http://senseis.xmp.net/?Valkyria.  

Retrieved at 2011-07-14 T14:33:12+08:00. 

 

Rimmel, A., Teytaud, F. and Teytaud, O. (2010). Biasing Monte-Carlo Simulations 

through RAVE Values. In Proceedings of the 5th International Conference on 

Computer and Games 2010, pp. 59-68. 

 

Rosin, C. D. (2010). Multi-armed bandits with episode context. Proceedings of ISAIM 

2010. 

 

Schaeffer, J. (1989). The history heuristic and alpha-beta search enhancements in 

practice. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, 

pp. 1203-1212. 

 

Segal, R. (2010). On the Scalability of Parallel UCT. Proceedings of the 5th 

International Conference on Computer and Games 2010. 

 

Shannon, C. E. (1950). Programming a computer for playing chess. Philosophical 

Magazine, 7th series, Vol. 41, No. 314, pp. 256-275. 

 

Sheppard, B., Williams, M., Dailey, D., Hillis, D., Nentwich, D., Persson, M., Fotland, 

D. and Boon, M. (2009). Tweak to MCTS selection criterion. Computer-go mailing 

list,http://groups.google.com/group/computer-go-archive/browse_thread/thread/7531b

ef033ca31f6, Jun. 2009. 

 

Silver, D. (2009). Reinforcement learning and simulation-based search in computer 

Go. Ph.D. dissertation, University of Alberta. 

 

Slate, D. J., and Atkin, L. R. (1977). Chess 4.5 - The Northwestern University Chess 

Program, Chess Skill in Man and Machine, P.W. Frey (ed.), Springer-Verlag, New 



 

89 
 

York, pp. 82-118. 

 

Smith, A. (1908). The game of Go, the national game of Japan. 

 

Šolak, R. and Vučković, R. (2009). Time management during a chess game. ICGA 

Journal, vol. 32, No. 4, pp. 206-220. 

 

Stern, D., Herbrich, R. and Graepel, T. (2006). Bayesian Pattern Ranking for Move 

Prediction in the Game of Go. In Proceedings of the International Conference of 

Machine Learning. 

 

Stogin, J., Chen, Y.-P., Drake, P., and Pellegrino, S. (2009). The Beta Distribution in 

the UCB Algorithm Applied to Monte-Carlo Go. In Proceedings of the 2009 

International Conference on Artificial Intelligence, CSREA Press. 

 

Tesauro, G., Rajan, V. T., Segal, R. (2010). Bayesian Inference in Monte-Carlo Tree 

Search , In Proceedings of the Conference on Uncertainties in Artificial Intelligence 

2010. 

 

Teytaud, O. (2011). News on Tromp-Cook.  

http://www.mail-archive.com/computer-go@dvandva.org/msg02171.html.  

Retrieved at 2011-07-17 T19:50:20+08:00. 

 

Tromp, J. and Farnebäck, G. (2006). Combinatorics of Go. Proceedings of 5th 

international Conference on Computer and Games, pp. 241-249. 

 

Xie, F., Liu, Z. (2009). Backpropagation Modification in Monte-Carlo Game Tree 

Search. Intelligent Information Technology Application, 2009 (IITA 2009), pp.  

125-128.  

 

Yajima, T., Hashimoto, T., Matsui, T., Hashimoto, J. and Spoerer, K. (2010). Node 

Expansion Operators for the UCT Algorithm. Proceedings of the 5th International 

Conference on Computer and Games 2010, pp. 116-123. 

 

Yamashita, H. (2010). time settings. Computer-Go mailing list.  

http://dvandva.org/pipermail/computer-go/2010-July/000687.html. 

Retrieved at 2011-07-17 T19:50:56+08:00. 

 



 

90 
 

Yamashita, H. (2011). Exploration formulas for UCT. Computer-Go mailing list. 

http://www.mail-archive.com/computer-go@dvandva.org/msg02155.html. 

Retrieved at 2011-07-17 T19:51:22+08:00. 

 

Yamato. (2011). News on Tromp-Cook.  

http://www.mail-archive.com/computer-go@dvandva.org/msg02184.html.  

Retrieved at 2011-07-17 T19:51:43+08:00. 

 

Yen, S. J. (1999). Design and Implementation of Computer Go Program Jimmy 5.0. 

Ph.D. dissertation, National Taiwan University. 

 

Yoshimoto, H., Yoshizoe, K., Kaneko, T., Kishimoto, A. and Taura, K. (2006). Monte 

Carlo Go Has a Way to Go. In Proceedings of the 21st National Conference on 

Artificial Intelligence, AAAI Press, pp. 1070-1075. 

 

Zobrist, A. (1969). A model of visual organization for the game of Go. Proceedings of  

AFIPS Spring Joint Computer Conference, Boston, AFIPS Press, Montvale, NJ, pp.  

103-111. 

 

Zobrist, A. (1970). Feature extractions and representation for pattern recognition and 

the game of Go. Ph.D. Thesis, Graduate School of the University of Wisconsin, 

Madison, WI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

91 
 

Appendix A. Publication List  
 

(a) Journal Papers 

[1] Huang, S. C., Coulom, R. and Lin, S. S. (2010). Monte-Carlo Simulation 

Balancing Applied to 9×9 Go. ICGA Journal, Vol. 33, No. 4, pp. 191-201. 

 

[2] Huang, L. T., Chen, S. T., Huang, S. C. and Lin, S. S. (2007). An Efficient 

Approach to Solve Mastermind Optimally. ICGA Journal, Vol. 30, No. 3, pp. 

143-149. 

 

(b) Conference Papers  

[1] Huang, S. C., Coulom, R. and Lin, S. S. (2010). Monte-Carlo Simulation 

Balancing in Practice. In Proceedings of the International Conference on 

Computers and Games 2010 (CG2010), JAIST, Kanazawa, Japan, September 

24-26. 

 

[2] Huang, S. C., Coulom, R. and Lin, S. S. (2010). Time Management for 

Monte-Carlo Tree Search Applied to the Game of Go. International Workshop 

on Computer Games (IWCG 2010), Hsinchu, Taiwan, November 18-20. 

 

[3] Lin, S. S., Chen, B. and Huang, S. C. (2004). Building a Multi-modal 

Multimedia Information Retrieval System for the National Museum of History. 

In Proceedings of the 2004 International Conference on Digital Archive 

Technologies (ICDAT2004), pp. 121-130, Taipei, Taiwan. 

 

(c) Tournament Report 

[1] Huang, S. C. and Yen, S. J. (2010). Many Faces of Go wins Computer 13×13 

Go Tournament. ICGA Journal, Vol. 33, No. 3, pp. 172-173. 

  


