
1

Appendix I

2010 Super Computer Go:
Interviews with the Authors of

MoGo,
Many Faces of Go, Fuego and Zen

By Peter Shotwell

© 2010

Mogo

May 2010

I interviewed Dr. Olivier Teylaud again:

In 9 x 9, now, computers won against top pros. Fuego (Univ. Alberta)

did it as white with komi 7.5; Mogotw (in collaboration with NUTN, Taiwan)
did it as black with the same komi, supposed to be disadvantageous for
black. In 19 x 19, Mogo won with handicap 7 against a top pro and
handicap 6 against a young pro. However, these performances have never
been reproduced; I think H7 is still too hard for computers, against top
pros.

MoGo was running on the SuperComputer Huygens, using 25 out of

the 104 nodes of the Supercomputer, i.e., 800 cores at 4.7GHz, with a
floating point processing power of 15 Teraflop (more than 1000 times
Deep-Blue). This was the most powerful supercomputer ever used by a
board game. He also once quipped on the computer go e-group in answer
to, ‘What is the level of MoGo?’ ‘It all depends on the time you give to it.
With very little time, it can be no better than random, and with infinite
time, it plays perfectly! :-). And when asked why MoGo would sometimes
lose big and often win by 1/2 point, he said, ‘Winning is the only thing we

2

are interested in. If MoGo is ahead, it plays safely as possible but when it is
behind, it tries invasions and other risky moves that often fail.’

He continues:

Recent progress in computer go: By including extrapolation
(technically speaking, supervised learning), it was possible to improve the
design of Monte Carlo simulations by other means than just tedious
optimization. However, these improvements are successful in other games,
but not in go, probably because the Monte Carlo simulations in go are very
strong and therefore more difficult to improve by automatic means.

 By truncating Monte Carlo simulations, with replacement by value
functions, it is possible to merge Monte Carlo Tree Search techniques with
classical evaluation functions. This was in particular successful in amazons
(a very interesting work by Richard Lorentz, in California).

On the industrial side, there are now applications in fundamental AI
tasks (active learning, non-linear optimization), and direct applications (the
tuning of the Spiral library). We have started an industrial collaboration
around power management and I believe a lot in it; hopefully, we’ll start
also a work on water resources for agriculture.

Main limitations: The MCTS technique used in all successful
programs has trouble in case of multiple unfinished fights. The computer
does not have the ability to estimate which part is the most important. This
leads to bad choices in terms of [ignoring moves]. Humans are very strong
in situations in which many moves are equivalent; they know how to
extrapolate between equivalent moves and situations. The computer does
not have this ability, and is therefore very weak for in liberty races in which
many moves are equivalent (compared to humans who efficiently count
liberties instead of simulating all the orders for filling the liberties of a
group).

Big hopes: Extending the supervised learning briefly mentioned
above, or using techniques which ‘merge’ several won simulations into
better simulations (Peter Drake, in Portland, published interesting works on
this).

3

Many Faces of Go

David Fotland’s program, The Many Faces of Go, was a classic

program that only evaluated a slow 100 positions a second until February
2008 . . .

I had been watching progress for a couple of years, thinking MCTS

only worked for 9 x 9 but when CrazyStone won the 19 x 19 UEC Cup, it
led me to rewrite Many Faces to use UCT in early 2008. This led to my win
for both 9 x 9 and 19 x 19 in the computer games Olympiad later that
year. I tried more than 400 variations on the basic UCT algorithm or
playout strategy during this half-year of intensive development. The engine
was written in C and tuned from the start for performance. I couldn’t have
done this many experiments (often several per day), without a very fast
engine, because I used 1000 game contests to see if there was
improvement with statistically significant results. Part of the reason I won
is because the basic UCT/MC is so fast that I can incorporate the slow
Many Faces knowledge and still get over 10K playouts per second per CPU
on 9 x 9.

The Windows HPC server 2008 that I used, which Microsoft has just
released, is a server operating system for high performance clusters and
their MPI implementation is about 10% faster than Linux on the huge
machines with thousands of cores. A video of the Demo is at
http://www.youtube.com/watch?v=Qe0o-IvHOa0.

Fotland now has his own 16 core machine and Many Faces 1 at 10

seconds a move has been a strong 1-dan ever since becoming World
Champion. His Monte Carlo program, Many Faces of Go 12, is available at
www.smart-games.com.

http://www.youtube.com/watch?v=Qe0o-IvHOa0
http://www.smart-games.com/

4

Fuego

Martin Meuller also answered some questions in an email about

Fuego, the open source program he is involved with. He wrote that it was
written in C++ that is quite similar to other MCTS programs except that it
is built above a game-independent library that has been successfully used
for many games other than go. Some specific features are an efficient lock-
free shared memory implementation for multithreading, playout rules for
low liberty situations, prior knowledge to bias the exploration of the search
tree, and an opening book. Also, BlueFuego, developed at IBM, is a (closed
source) library for MPI connecting many copies of Fuego running on a
distributed memory machine. This combination won the 9 x 9 tournament
of the 2009 Computer Olympiad in Pamplona, Spain. Later in 2009, the
program became the first computer program to win a 9 x 9 game on even
against a top professional, It is running about 2-kyu on KGS.

5

Zen

Zen is a late-comer run by an anonymous programmer who calls

himself ‘Yamato.’ He wrote that it is part MoGo with shape patterns that
are generated by a minorization-maximization algorithm like Crazy Stone.
But they are directly combined with UCT, without progressive widening.
Probably the most original part of Zen, he says, is in the playout. The
author does not think MC simulations must always be fast, so it has a lot of
hard-coded go knowledge. Currently it is a 2-dan on KGS at 15 seconds a
move.

* * * * *

To keep track of the assault on human thinking (or its advance,

depending on how you look at it), go to
http://www.gokgs.com/graphPage.jsp?user

http://www.gokgs.com/graphPage.jsp?user

