
Steganography in games: A general methodology and
its application to the game of Go
Julio C. Hernandez-Castroa,*, Ignacio Blasco-Lopezb, Juan M. Estevez-Tapiadora,
Arturo Ribagorda-Garnachoa
aComputer Science Department, Carlos III University of Madrid, Avda. Universidad 30, 28911 Legane´s, Madrid, Spain
bDivisio´n TSO – A´ rea de Telecomunicaciones Tecsidel, 28016 Madrid, Spain
a r t i c l e i n f o
Article history:
Received 8 October 2005
Revised 11 November 2005
Accepted 2 December 2005
Keywords:
Steganography in games
Information hiding
Covert channels
Steganalysis
Go
a b s t r a c t
Techniques to hide valuable information within seemingly harmless messages have been
widely used for centuries. Typically, their use is appropriate when encryption is not available
or not adequate (e.g. when available cryptography is too weak), or simply when it is
convenient that no external observer can infer that some information is being exchanged.
In the digital era, new cover mediums for hiding data in communication are constantly being
proposed, fromthe classical image files (such as bmp, gif, and jpg formats) to audio files
(i.e. wav and mp3), text and html documents, emails disguised as spam, TCP/IP packets,
executables programs, DNA strands, etc. In this work, we present and analyze a novel
methodology that illustrates how games (such as Chess, Backgammon, Go, etc.) can be
used to hide digital contents. We also look at some of its possible advantages and limitations
when compared with other techniques, discussing some improvements and extensions.
Finally, we present the results of a first implementation of an open-source
prototype, called STEGOGO, for hiding digital contents in Go games.
a 2005 Elsevier Ltd. All rights reserved.
1. Introduction
The word steganography literally means covered writing. It was
coined in 1499 by Trithemius, a monk who encoded letters
as religious words in such a way as to turn covert messages
into apparently meaningful prayers. It comprises a broad
range of different methods for secret communication that
conceal the very existence of hidden data. Among these
methods are writing over shaved slave heads, or tables covered
with wax, knitting, invisible inks, microdots, phrase
and character arrangements, combinations of the dots and
dashes on letters i, j, t, and f giving Morse codes, null ciphers,
covert channels, and spread-spectrum communications.
Steganography is, thus, the art and science of concealing
the existence of information within seemingly innocuous carriers
(e.g. images, audio files, text, html, etc.) or, as defined in
Johnson et al. (2000) ‘‘of communicating in such a way that the
presence of a message cannot be detected’’. The objectives of
steganography are quite different from those of cryptography.
While cryptographic techniques scramble messages so that if
intercepted, messages cannot be understood, steganography
camouflages a message to hide its existence and makes it
seem almost invisible, thus concealing the fact that amessage
is being sent altogether. An encrypted message may draw
suspicion while an invisible message will not. Steganography
provides a means of secret communication which cannot be
* Corresponding author.
E-mail addresses: jcesar@inf.uc3m.es (J. C. Hernandez-Castro), ignacio.blasco@mad.tecsidel.es (I. Blasco-Lopez), jestevez@inf.uc3m.es
(J. M. Estevez-Tapiador), arturo@inf.uc3m.es (A. Ribagorda-Garnacho)
available at www.sciencedirect.com
journal homepage: www.elsevier.com/locate/cose
0167-4048/$ – see front matter a 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cose.2005.12.001
compute r s & s e c u r i t y 2 5 (2 0 0 6) 64 – 71

removed without significantly altering the data in which it is
embedded. For the embedded data to be recovered, an attacker

should first find a way to detect it, only then being
able to mount a classical cryptanalysis attack (it is common
practice to cipher messages before hiding). The associated
field which tries to detect, recover, or eliminate messages
hidden by steganographic techniques is called steganalysis.
Steganography is nowadays in common use, both for copyright
protection of digital media as well as for exchanging
information without raising suspicions (of law enforcement
agencies and/or dictatorial governments, for example). There
are many tools for hiding messages in images, audio files,
video, and other not so common media such as text, TCP/IP
packets (Murdoch and Lewis, 2005; Hintz, 2002; Giffn et al.,
2002), executable files (El-Khalil and Keromytis, 2004), DNA
strands (Clelland et al., 1999), XML (Inoue et al., 2001), etc.
Nowadays, the huge amount of Internet traffic allows easy
covering of hidden messages in media where the addition of
this extra information is very difficult to detect even when
complex, time-consuming steganalytic techniques are
applied.
The USA government imposed severe restrictions during
some phases of WWII with the aim of trying to render useless
as many covert communication channels as possible (Kahn,
1967). The post banned a large class of objects, including
crosswords and newspaper clippings; lovers’ X’s in letters
were deleted; watch hands were shifted; orders for flowers
could not specify either the kind of flower or the date of delivery;
and items such as loose stamps and blank paper were
replaced. Thousands of people were involved in reading
mail, looking for language which appeared to be forced to accommodate
secret messages. They also routinely rephrased
and rewrote letters and telegrams. In one case, a censor
changed ‘‘father is dead’’ to ‘‘father is deceased’’, which was
followed by the revealing reply ‘‘is father dead or deceased?’’
Covert channels in games have not been widely studied,
possibly with the only exception of Bridge, which could be
used for allowing collusion among participants. The problem
with Bridge is especially interesting: algorithms for transmitting
information between partners during bidding are legal
and might provide a great advantage to the teams that better
manage them. Typical schemes usually provide a way for
a player to encode information about his hand in the cards
he plays. Upon seeing this, his partner could make a more precise
contract. An additional twist in Bridge is that, while covert
channels are permitted by the rules, if a player is asked what
the meaning of a bid is, he should answer truthfully, so the information
sent by this channel could not be a secret. Different
strategies have been developed to overcome this problem, the
most successful to date is presented in Winkler (1983), where
the author developed bidding conventions whereby one
player could send her partner secret information about her
hand, which is totally unrelated to the actual bid and
completely indecipherable to the opponents, even though
the protocol is public and known to them.
A recent and notable experiment is described in Murdoch
and Zielinski (2004), where a team of researchers developed
a number of different programs to play and collude in a Connect-
4 variant online programming competition at Cambridge
University. These programs acted as independent players in
the contest, but were able to authenticate themselves and
follow different playing strategies whenever playing an opponent
which has taken part in the plot or not. The purpose was
to maximize the overall winning probabilities of the team by
creating programs that will deliberately lose in the presence
of other authenticated partners, and play for a sure draw
with the rest of contenders. Authors showed how this strategy
led to a win in the tournament, even if they did not have especially
good algorithms for the Connect-4 variant, or at least not
significantly better than those proposed by other contestants.
The critical process of mutual authentication could be carried
on by means of different covert channels: authors cite

and analyze the timing of moves (by purposely delaying the
execution of certain moves) and the choice of equivalent
moves, and chose the latter. This approach tries to codify
some bits by choosing moves within the set of moves that
could be shown not to change the outcome of the game
when compared with the best possible move.
The idea is to order the aforementioned set of n equivalent
moves by some prearranged criterion, then chose the rth
move to send the value r. Authentication is performed by
repeating this process a given number of times (10 is shown
to be adequate for this variant of the Connect-4 game) and
checking if the thus received sequence equals the values generated
by a given PRNG with a certain known common seed.
There are many other covert channels that if not directly
relevant to computer games might be used in different games
after slight modifications. Most of these covert channels have
been described in the bibliography for the analysis of multilevel
secure computer systems, notably in Light Pink Book
(1993).
There are very few additional works that relate data hiding
and games, and none in the way proposed in this article. The
most remarkable is Ding et al. (2000), where the authors describe
techniques extracted from the Tangram and Conway’s
game for developing an algorithm intended for scrambling
pictures.
The rest of this paper is organized as follows. In section
‘A framework for hiding data in games’, we present a formal
framework for hiding data in games, including the theoretical
limitation in terms of the channel capacity to hide information.
Next, in section ‘Approaches to hide data in games’
we elaborate on how this methodology can be applied in
practical scenarios, focusing on the game of Go to illustrate
the main ideas. Section ‘Steganalysis’ is devoted to discuss
steganalysis techniques associated to our proposal, as well
as the countermeasures that can be deployed. In section
‘An implementation for Go’, we describe a working implementation
for the game of Go, and further investigate the
aforementioned attacks in a real environment. Finally, section
‘Conclusions’ summarizes our work by presenting the
main conclusions.
2. A framework for hiding data in games
Before detailing our methodology, we first provide a brief
background on formal games as considered in Game Theory.
Interested readers can find a good introduction to the field in
Gibbons (1992

An extensive-form game is defined by the tuple:
CP;A;Q; p; ðIiÞi˛P; ð6iÞi˛PD (1)
where,
_ P is a set of players.
_ A is a set of actions, i.e. moves available to players at different
stages of the game.
_ Q is a set of action sequences, satisfying:
– e ˛ Q, where e is the empty sequence,
– if ðakÞw

k¼1˛Q and 0 < v <w, then ðakÞv

k¼1˛Q,
– if ðakÞv

k¼1˛Q cv _ 1, then ðakÞN

k¼1˛Q.
If q is a sequence of actions and a is an action, then q$a
denotes the action composed by q followed by a. A finite
sequence of actions q ˛ Q is said to be terminal if there is no
a such that q$a ˛ Q. The set of terminal sequences of actions
is denoted by Z. Finally, A(q) ¼ {a ˛ A : q$a ˛ Q} denotes the
set of available actions after q ˛ Q\Z.
_ p is the player function. It assigns a player p(q) ˛ P to every
non-terminal sequence q ˛ Q\Z. The interpretation is that
player p(q) has the turn after the sequence of actions q.
_ Ii is an information partition for player i ˛ P. It is a partition

of the set {q ˛ Q\Z : p(q) ¼ i} preserving the property that if the
sequences q and q0 are in the same information set Ii˛Ii,
then A(q) ¼ A(q0).
_ 6i is a preference relation of player i ˛ P on Z.
The common interpretation of an extensive-form game is
the following. The game can be thought of as a tree, where
the edges and the vertices are associated to actions and sequences
of actions, respectively. The empty sequence e represents
the root of the tree. The game begins at e and ends at
a terminal node. After any non-terminal sequence of actions
q ˛ Q\Z, the player given by p(q) chooses an available action
from the set A(q). Next, q is extended with a, and the current
history of the game becomes q$a. Terminal vertices are those
that cannot be followed by any other action.When a sequence
of actions q reaches a terminal vertex, the game finishes.
The sequences q ˛ Z are the possible outcomes of the game.
The preference relation 6i establishes which outcomes are
preferred by player i. Thus, if q, q0 ˛ Z and q6i q0, then player
i prefers q0 to q. The most usual form of representing preference
relations is payoffs. A vector y(q) ¼ (yi(q))i˛P of real numbers
is assigned to every terminal sequence of actions q ˛ Z, in
such a way that q6iq05yiðqÞ _ yiðq0Þ. The value yi(q) can be
interpreted as a measure of how much player i gains when
the game is developed as described by q.
Information sets represent the information available to
players at every stage of the game. When an information set
covers several nodes, then the player does not know in which
part of the tree she is – or, equivalently, she does not know the
last action of her rival. Usually, nodes belonging to the same
information set are graphically represented by a dashed line
that links them together. When an information set is not
a singleton (i.e. it has more than one node), it is necessary to
specify the player beliefs. Formally, beliefs are represented
by a probability distribution over the nodes belonging to the
information sets.
If there exists at least one information set Ii˛Ii such that
jIij > 1, then the game is called a game of imperfect information.
On the contrary, if for all players every information set
is a singleton, then the game is called a game of perfect
information.
2.1. Strategies
A strategy for player i is a function si specifying what action i
should carry out at each of her information sets. A strategy
si assigns an action a ˛ A(p) to each non-terminal sequence
of actions q, preserving that if q and q0 are in the same information
set of player i, then si assigns the same action to
both the sequences. The set of all strategies of player i is
denoted by Si.
A strategy profile is a vector (si)i˛P of individual strategies,
one for each player. Specifying completely a strategy profile
determines univocally the outcome of the game. Sometimes
a strategy profile is written (sj, (si)i˛P\{j}) in order to emphasize
the specification of strategy sj for player j.
2.2. Information and channel capacity
The key point of our approach relies on the set of strategies
(Si)i˛P available to each player after her opponent’s move. For
simplicity, we will assume that jPj ¼ 2, with P ¼ {i, j}, even
though extending our results to a general game with n players
is straightforward. We also assume the case of a perfect
alternating game, in which each player has always the turn
after her rival action.
Suppose that
q ¼ ðakÞv

k¼1˛QnZ (2)
is a non-terminal action sequence, satisfying that p(q) ¼ i (i.e.
after q, it is player i’s turn). We denote by
SiðqÞ ¼ _s1i

ðqÞ;.; ski

ðqÞ;.; sNi

ðqÞ_ (3)

the possible strategies available to player i after action sequence
q. We also assume that Si(q) is ordered according to
the expected payoff associated to each strategy, in such
a way that ski

ðqÞ is the k-th best response after q.
In a typical scenario, player i is expected to follow the best
response, i.e. s1i

ðqÞ. However, deliberatively selecting a specific
move in Si(q) can be used to send information to the other
players. In general, in a case like that illustrated by expression
(3), player i can send up to Plog2ðNÞR bits per move. Assuming
a similar behavior by player j and a terminal action sequence
z ¼ ðakÞw

k¼1˛Z (4)
players can exchange during the game up to:
IðzÞ ¼X
w

i¼1 Plog2____
SpððakÞi

k¼1Þ_ðakÞi

k¼1____

_R bits (5)
Note that the channel capacity is limited by the very nature
of the game and, more specifically, by the amount of strategies
available to players at each stage of the game. It is clear that
for this scheme to properly operate, both players must have
access to the structure of ordered strategies given by expression
(3). Otherwise, the information sent may be incorrectly
decoded. 3. Approaches to hide data in games
The idea of hiding information into game strategies can be applied
in two different scenarios. The first and more straightforward
one consists in playing a new game from scratch.
However, a similar approach can be put in practice by adding
extra information to an already played game. In this case, two
parties can append comments and variations at different
stages of the game, as if they were discussing alternative
strategies to those actually played.
Next, we describe briefly these two approaches.
3.1. Playing a new game
Both parts of the communication channel should have access
to exactly the same software, and share a common secret key
(used for encrypting the hidden contents) and some other
parameters (i.e. the board size, the software version, etc.) to
assure that the software’s internal states are reproducible by
the two parties.
The main idea is to compute for each position played in the
game all the movements which are over a certain threshold
value T, and then codify in the selection of the actual played
move some bits of the message we want to hide. Say that, at
a given position, there are gm (good moves) moves not worst
than the given threshold T (analogously, we can fix a certain
number n and pick the move within the list of best n moves),
then sort them by their value (according to the evaluation
function) and select the i-th move to codify the binary representation
of the number i. In this way, in each position we
will be able to hide around log2 (gm) bits of information.
The choice of threshold T allows us to adjust some aspects
of the scheme. By increasing T, the channel capacity will grow,
since we will have more gm to embed hidden bits. Alternatively,
decreasing T will result in a higher invisibility of the
hidden contents, for chosen strategies do not deviate significantly
from optimal.
Other possibilities exist, for example the use of a dynamic
T which varies over time or follows a random distribution in
order to simulate the game between two players with a good
knowledge of openings (i.e. no really bad moves at the beginning
of the game) but not so strong in the middle or endgame.
The other communicant can easily decode these moves into

binary data by arriving at the same position, re-computing
the move list and searching for the code of the move actually
played.
3.2. Inserting data into a game
Among the multiple possible options here, we have focused
on which we consider as the most straightforward way to embed
hidden data into games. Moreover, it presents the benefits
of simplicity, high embedding capability, and security. It simply
consists in including variations and comments in already
played games.
The general idea is basically to follow the overall aforementioned
procedure for hiding some bits in every move,
but in this case moves correspond to variants of the main
line actually played on the game (see Fig. 1).
In this way, at certain positions in the game we would introduce
variants of the main line played. Each of these variants
could embed bits by various means: choosing at what
movement does the variant begin, the length of the variant,
and obviously, in every move of the variant, just by using
the same algorithm described above for codifying hidden
data in moves.
Another possible channel for embedding information is the
inclusion of comments. For instance, the following set of 8
comments: {‘‘black losses here’’, ‘‘black is loosing’’, ‘‘white
wins’’, ‘‘with a winning advantage to white’’, ‘‘white wins easily’’,
‘‘white will win’’, ‘‘black is lost’’, ‘‘very bad for black’’}
might be used to express the same and, simultaneously, codify
three bits. Likewise, any other technique derived from the
field of text steganography could be applied in this context.
Generally, this embedding technique will allow to hide
much more information than the first one, and will be in
most cases harder to detect. However, it also has the important
drawback of a much lower robustness: it suffices to delete
all comments to erase the hidden data, but at the cost of
severely decreasing the attractiveness and usefulness of the
game file.
3.3. Further considerations
Using this approach,we can develop applications that allow to
hide data into apparently innocuous games. As a proof-ofconcept,
we have created one of such applications devoted
to the game of Go, which is based on the open-source GNUGo
program (see below section ‘An implementation for Go’). Similarly,
this could be done for Chess and its dozens of variants,
including Bughouse, Fischer Random, Loser’s, Atomic and
others, not to mention other popular games such as Backgammon
and Othello. New games with even higher capacity for
embedding hidden information could exist or be created.
In any case, this kind of steganographic application can be
used to ease covert online communication through the Internet
by connecting to one of the many hosts that provide these
services. As an example, at the Internet Chess Club (ICC) morethan 100 tournaments take place everyday, with an average
number of connected users of around 2100. They also provide
a database of more than 2,000,000 chess games. This offers
a huge number of opportunities for making covert communication
very difficult to track. Furthermore, ICC is not the only
possibility. Similar services are offered at the Free Internet
Chess Server (FICS), US Chess Live, Chess AnyTime, Chess.-
Net, and many other national servers. Likewise, this ease for
hidden online communication is also true for Go, for which
there are many servers all around the world, like the Internet
Go Server (IGS), the Kiseido Go Server (KGS), the No Name Go
Server (NNGS), and the Dragon Go Server (DGS).
Creating a new game for hiding data seems the most suitable
possibility for online two-party communication, while
inserting data into already existing games is much more appropriate
for off-line communication and the storing of sensitive
information. Both alternatives are possible in any of the
mentioned servers, which allow online playing and automatically
create a database with all played games.
The main advantages of our approach over other steganalytic

techniques are the following:
_ Its novelty, compared with classical methods such as image
or audio steganography.
_ The ability to disguise the communication as casual. Both
parties could play dozens of games a day, with only one of
them carrying hidden data, which will not probably be
noticed. Other classical methods, such as directly sending
images as email attachments might more easily raise
suspicion.
_ Classical steganographic methods, such as the exchange of
images or sound files as email attachments, or even posting
these files in webpages or news servers, do not really allow
for truly online communication. For simulate online communication
in all these methods, one needs to send a number
of hidden messages, a fact that could easily increase the
attention of a warden. Our method, on the other hand,
allows easy two-party online communication while playing
one or various games online.
4. Steganalysis
The process of detecting steganographic messages is known
as steganalysis, and a particular steganalytic technique is
called an attack. In the following, we discuss some possible
statistical attacks to our proposal.
Statistical attacks try to detect significant deviations, produced
by the insertion of hidden data into the stego medium,
from a given statistical model. The main game characteristics
that might be sensible to these changes are the following:
_ Game length: in general, the selection of moves other than
the best in a certain position should produce games where
one player (the one that codifies data) plays steadily worst
than the other. This difference should in most cases lead
to shorter games. As a general rule of thumb, increasing
the number of embedded bits per move should decrease
the game length and vice versa.
_ Game level: for the same reasons, the codifying part would in
general be playing at a lower level than the non-codifying
part, and routinely making more mistakes (or less accurate
moves). The bigger the number of embedded bits per
move, the bigger the level difference between the two
players.
_ Game result: consequently, not only the game result will generally
be favourable for the non-codifying player, but also
the overall winning difference, when compared with games
played between players of similar strength.
These values could also give a good hint of the number of
zeros in the codified sequence if no encryption or permutations
are used. This is easily avoidable by using a block cipher for
encrypting the movements following a common secret key.
For the variation wherein we hide data into a game by
inserting comments and variations, an obvious attack path
is to erase all variations from a given game. This will surely
erase all hidden data, but to the prize of loosing valuable comments
and variations of games that, otherwise, could be not so
interesting to the average player. Literally thousands of games
between professionals would not be steadily downloaded and
be highly valuable unless they are heavily annotated and full
of variations that explain beginners and also advanced players
the reasons behind the Pro’s moves. One can also try to include
more variants for making harder the task of recovering
the hidden data, thus desynchronizing the coding and decoding
algorithms. Both attacks could be successful, and are hard
if not impossible to stop, but at the cost of a lack of functionality.
On the other hand, when correctly implemented and
applied, this technique could become virtually undetectable.
4.1. Countermeasures
Among the possible countermeasures that we can use to avoid
these attacks, we have considered the following. In the case of
games with handicap, as Go, the komi1 should be increased
with the aim of avoiding that the codifying part always loses.
This will make the game more fair, shortening the strength

differences derived from the codification of information,
thus making this codification harder to detect.
Another general solution to the same problem is to force
both parties to always codify something, even if the communication
is only one-way. The other party could in this case
codify the trivial message Encipherk(000/00). The aim of this
is to make its playing strength very close to that of the really
codifying part, trying to make the truly codifying party indistinguishable
from the other. One important drawback of the
proposed system is that its capacity is quite small. To overcome
this limitation, we recommend the use of a compression
phase (Huffman compression optimized for English text is
a reasonable option, and has been implemented in our application)
before actually codifying the information. This will
typically improve capacity around a 30% at almost no cost.
1 For those not familiar with Go, the komi is a compensation –
a number of points – received by white player for the disadvantageous
fact that he moves second. The amount of komi received
is agreed before starting the game.

5. An implementation for Go
We have developed an open-source software project called
STEGOGO which aims to implement our proposed data hiding
techniques in the game of Go, and examine the applicability
of the proposed attacks and countermeasures.
STEGOGO follows our proposed strategy for hiding data in
a new game (described in section ‘Playing a new game’) and
works over the GNUGo playing program (The GNUGo project).
This first version of the STEGOGO program hides three bits of information
per move, being capable of compressing (Huffman,
1952) and encrypting (TEA, Wheeler and Needham, 1994) data
as suggested in our proposal.
The results obtained with this first implementation were,
mostly, as predicted. For testing purposes, we generated three
groups of 1000 games named C0, C1, and C2, meaning, respectively,
that there were 0 communicants (i.e. a normal game
between two instances of GNUGo), 1 communicant, or both
parties were communicating.
We then tested the validity of some of the attacks already
presented. Our aim is to make the transmission of information
hard to detect by the warden, so as to produce Go games
hard to distinguish from those with 0 communicants, which
are normal Go games of GNUGo against itself. Our general assumption
was that the games in C2 would be much closer to C0

(i.e. harder to distinguish) than those in C1. In other words, we
believed that if both communicants transmitted information,
the not-so-good moves will somehow compensate one another,
and the general result would be much similar to when
no communication at all took place. But empirically, that
was consistently proven to be not the case. As we can see in
Fig. 2, the distribution of the number of moves in the case C1

is actually much closer to C0 than that of C2.
This was quite a surprising and unexpected result which
was consistent when we performed more experiments to
verify its correctness. Intuitively speaking, when the two
parties hide data in their moves, we find not a cancellation
but an augmentation effect.
However, these differences in the distribution of the number
of moves only become apparent (and statistically significant)
after a large number of games have been observed and
analyzed. For example, for obtaining these figures we needed
1000 games in each of the three groups (C0, C1, C2). However,
this could not be quite the case on a real environment where
access to the games will not probably be so easy.
The steganalytic technique tested here, based on detecting
differences in the distributions of the number of moves per
game, could greatly suffer from the lack of enough games.
For example, we performed multiple experiments with as
many as 50 games in each of the groups, and it was consistently
not possible to distinguish the games in C1 and C2

from those in C0 (at a significance level a ¼ 0.01). They systematically
passed various statistical tests (t-test, sign-test, Wilcoxon
signed rank test, and Friedman ANOVA) that decide if
two samples are likely or not to belong to the same population.
Moreover, in many cases the three populations passed the
Friedman test, thus being, to some extend, statistically
indistinguishable.
We have repeated these experiments with 100 games in
each of the groups, and the results obtained are quite surprising.
Although it is generally possible to distinguish C0 from C2

(but not always), C0 and C1 were still hard to distinguish. This
implies that more than 100 games would be needed to mount
a successful steganalytic attack against STEGOGO being used by
only one of the players to secretly communicate data at a rate
of three bits per move, based on this scheme. These results are
presented in Tables 1 and 2.
Analogously, attacks based on game results could be possible,
as stated before. We carried out experiments focusing on
the results of the games, that is, who won (Black or White) and
the winning difference (in the game of Go, the difference
Fig. 2 – Distribution of moves in the sets (a) C0, (b) C1, and (c) C2.
Table 1 – P-values for different instances of the Friedman ANOVA statistical test comparing the sets C0, C1, and C2 for
different sizes
Number
of games
vs. C1 C2

Test 1 Test 2 Test 3 Test 4 Test 1 Test 2 Test 3 Test 4
N ¼ 50 C0 0.6682 0.4750 0.0321 0.0078 0.4658 0.0172 0.1572 0.6616
N ¼ 100 C0 0.1913 0.1095 0.0066 0.2640 0.0035 0.0208 0.0690 0.0051
N ¼ 1000 C0 <0.0001 <0.0001between the territory conquered by the winner and the loser).
Again, we analyzed the results of 1000 STEGOGO games for each
type, C0, C1, and C2. This time, the results were as expected,
but to some extent opposed to those previously obtained
when considering the game length. It seems that from the
point of view of the game result, games in C2 are much similar
to those in C0 than games in C1. This can be explained by the
fact that the party who is sending information is forced to systematically
deviate from the optimal strategy. On the contrary,
the other player can choose better moves. As the game
end approaches, this asymmetry will imply a disadvantageous
result for the player who is hiding the information. It is clear
that this situation does not happen in the case of C2, for
both players follow identical behaviors. Therefore, in a real
scenario even if one party has no data to hide, the best practice
against steganalysis based on game result is for both
players to hide data (even garbage) in their moves. This result
was consistent over a number of tests.
However, we must take into account that these results
depend strongly on the number of bits codified in each
move. In fact, the default rate of STEGOGO (three bits/move)
could be considered too high. Reducing this amount to two
or one will make all these attacks much more difficult to
succeed, requiring an even higher number of games to arrive
to statistically significant results, although this will also
reduce the capacity of the overall scheme.
One question to consider is to what extent these attacks
are relevant for the case where the two communicants want
their game to simulate a real game between humans. If they
try to simulate a game between two instances of GNUGo, all
these analyses are pertinent; they are interesting, anyway,
to see how the insertion of hidden information produces
changes over what would have been a normal Go game, in
other words, to detect the additional load associated with
the use of cover channels. In any other case, a model of games
between humans should be developed before we can measure
any distance or difference against this normal human behavior.
The authors believe that this is such a difficult task to accomplish
that STEGOGO could be, and probably will be for years,
safely used to communicate discretely over Internet. We also
hope these ideas will soon be applied to many other games,

some of which could perhaps show to have a higher hiding
capacity than Go.
6. Conclusions
We have presented a new steganographic paradigm for embedding
hidden data into games. In doing so, we have tried
to be as general as possible, giving a theoretical framework
for general games in extensive form.
For this general model, we have introduced some new
schemes for statistical steganalysis based on differences in
game length, result, and level that could aid in detecting
games with hidden data. We have also proposed some general
solutions to overcome these novel attacks, which were presented
and analyzed over STEGOGO, a working implementation
on the game of Go. The experiments carried out with this tool
have provided us with some useful insights about practical
aspects of our proposal, and the severity and real implications
of the aforementioned attacks.
Besides its novelty, an important advantage of our proposal
is that it is quite difficult to detect, especially taking into account
that thousands of games are played everyday in many
different Internet servers, both free and commercial. Furthermore,
it allows true online communication while playing one
or various games, a feature that cannot be provided by classical
steganographic methods such as the exchange of images
or audio files as email attachments.
Acknowledgments
The authors are grateful to the anonymous reviewers for
their insights and fruitful comments during the review process,
which greatly contributed to improve the quality of the
original manuscript.
r e f e r e n c e s
A guide to understanding covert channel analysis of trusted
systems. NCSC-TG-030: Light Pink Book; November 1993.
Clelland CT, Risca V, Bancroft C. Hiding messages in DNA microdots.
Nature 1999;399:533–4.
Ding W, Yan WQ, Qi DX. A novel digital image hiding technology
based on Tangram and Conway’s game. In: Proceedings of the
2000 international conference on image processing (ICIP’00),
vol. 1; 2000. p. 601–4.
El-Khalil R, Keromytis AD. Hydan: hiding information in program
binaries. In: Proceedings of the sixth international conference
on information and communications security (ICICS). Lecture
notes on computer science. Springer-Verlag; 2004. p. 187–99.
Gibbons R. Game theory for applied economists. Princeton University
Press; 1992.
Giffn J, Greenstadt R, Litwack P, Tibbetts R. Covert messaging in
TCP. In: Dingledine R, Syverson P, editors. Privacy enhancing
technologies. Lecture notes in computer science, vol. 2482.
Springer-Verlag; 2002. p. 194–208.
Hintz A. Covert channels in TCP and IP headers. Presentation at
DEFCON 10. Available from: <http://guh.nu/projects/cc/>.
Huffman DA. A method for the construction of minimum redundancy
codes. Proc Inst Radio Eng September 1952;40(9):
1098–101. Inoue S, Makino K, Murase I, Takizawa O, Matsumoto T,
Nakagawa H. A proposal on information hiding methods
using XML. The first workshop on NLP and XML. Tokyo;
November 2001.
Johnson NF, Duric Z, Jajodia S. Information hiding: steganography
andwatermarking – attacks and countermeasures. Norwell,MA,
New York, The Hague, London: Kluwer Academic Press;
2000.
Kahn David. The codebreakers. New York, NY: The Macmillan
Company; 1967.
Murdoch SJ, Lewis S. Embedding covert channels into TCP/IP. In:
Proceedings of the seventh information hiding workshop.
Lecture notes in computer science. Springer-Verlag; 2005.
Murdoch SJ, Zielinski P. Covert channels for collusion in online
computer games. In: Proceedings of the sixth information
hiding workshop. Lecture notes in computer science, vol.
3200. Springer-Verlag; 2004. p. 355.
STEGOGO project, <http://sourceforge.net/projects/stegogo/>.
The GNUGo project, <http://www.gnu.org/software/gnugo/>.

Wheeler DJ, Needham RM. TEA, a tiny encryption algorithm. In:
Preneel B, editor. Fast software encryption: second international
workshop. Lecture notes in computer science, vol. 1008.
Springer-Verlag; 1994. p. 363–6.
Winkler P. The advent of cryptology in the game of bridge.
Cryptologia October 1983;7(4):327–32.
Julio Cesar Hernandez-Castro is Associate Professor at the
Computer Security Group of the Computer Science Department
of Carlos III University, Madrid, Spain. He has a B.Sc. in
Mathematics, a M.Sc. in Coding Theory and Network Security,
and a Ph.D. in Computer Science. His interests are mainly focused
in cryptology, network security, steganography and
evolutionary computation. He likes playing chess, and is a
decent opponent. He also likes Go, but he is not.
Ignacio Blasco-Lopez has a M.Sc. in Computer Science. Currently
he works at the Telecommunications Department of
Tecsidel, a Spanish telecommunications company while pursuing
his Ph.D. in Computer Science at Complutense University.
His areas of interest mainly comprise steganography
and steganalysis.
Juan M. Estevez-Tapiador is Associate Professor at the Computer
Science Department of the Carlos III University of
Madrid. He has a M.Sc. in Computer Science from the
University of Granada (2000), where he obtained the Best
Student Academic Award, and a Ph.D. in Computer Science
(2004) from the same university. His research is focused on
cryptography and information security, especially in formal
methods applied to computer security, design and analysis
of cryptographic protocols, and some theoretical aspects of
network security. In these fields, he has published around 20
papers in specialized journals and conference proceedings.
He is member of the program committee of several conferences
related to information security and serves as regular
referee for various journals.
Arturo Ribagorda-Garnacho is Full Professor at Carlos III University,
where he is also the Head of the Computer Security
Group, and currently acts as the Director of the Computer Science
Department. He has a M.Sc. in Telecommunications Engineering
and a Ph.D. in Computer Science. He is one of the
pioneers of computer security in Spain, having more than 25
years of research and development experience in this field.
He has authored 4 books and more than 100 articles in several
areas of information security.

